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1. Summary

The vision group at Rochester has spent the year investigating various aspects of
parallel computer vision, with the goal of building behaving, real-time systems that
perform multi-sensory integration. What sets our current work apart is 'a
commitment to the idea that an intimate coupling of sensory and motor capabilities
is a way to make progress on the vision problem. Behaving animals have such a
coupling, and its benefits have been demonstrated analytically, in several papers
from Rochester and elsewhere. This year has shown progress in building hardware
and software to implement the theory.

Hardware Developments: We have acquired special-purpose parallel pipelined
hardware for low-level vision, and have upgraded our 16-processor Butterfly Parallel
Processor with faster CPUs and floating point hardware. The Butterfly is now
connected with the rest of the vision hardware (the pipelined device and a fast Sun/3)
via the VME bus.

Individual Activities: David Sher completed his Ph.D. and is now at the State
University of New York at Buffalo. He and Chris Brown are continuing
collaborative work. Paul Chou is continuing his extension of Sher's probability-
based feature detection, and will finish his thesis in 1988. Paul Cooper is exploring
theoretical properties of his parallel object recognition algorithm. Bob Potter is
implementing Chou's evidence-combination algorithm on the Butterfly. Chris
Brown and Nancy Watts have been working on principal view computations in the
domains of solid planar polyhedra and the "blobs and sticks" domain of Paul Cooper.

In summary, our work this year broadened its focus from the optimal selection of
feature detectors in a Bayesian framework. Those results were used this year and
continue to be used in a working system that applies a Markov Random Field
formulation of the segmentation (objecthood recognition, figure-ground separation)
problem. Further, this year our work moved in the direction of acquiring and
commissioning real-time vision hardware and using the hardware in applications.
Theoretical work continues to be important, and this year we made progress on the
theory of principal views and convergence properties of two sorts of parallel
networks: connectionist nets for recognition and Markov Random Field models of
segmentation.

2. Active Vision

Recent technological and theoretical developments have made possible the
active, real-time control of robotic visual sensors as well as the real-time processing
of their output. At the University of Rochester, we are starting a serious research
effort involving the analysis, design, construction, and application of active sensing.
The major scientific premise is that an intimate cooperation between the sensory and
motor systems of a behaving, sensing entity allows significant improvement in the
quality and usability of visual information.
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The potential of such cooperation has long been recognized but until recently has
not been technically practical. At Rochester, we have several state-of-the-art devices
that we should like to integrate into a coherent hierarchical hardware and software
organization, ranging from a 16-processor M68020/68881 Butterfly down to a
MaxVideo pipelined image processor, a 3-degree-of-freedom binocular robot head,
and (in the near future) a PUMA 761 robot body. Progress this year has yielded some
hardware, some software, several committed people, and certain encouraging
results.

One of our first goals was (and still is) to develop a set of basic capabilities
(reflexes, low-level skills) upon which active vision can be securely based. Furcrnst
among these is fixation, or foveation. Closely related to foveation is vergence, which
can be useful for stereo fusion. Dynamic behavior built on fixation and vergence
includes a VOR-like reflex which maintains fixation despite commanded head
movements. Tracking is a dynamic version of fixation, used both to inspect moving
objects and to inspect objects while the head is in motion. Last, saccades are rapid eye
movements that have several important properties: visual processing ceases during
them, they account for both motion and position of the target object, they interact in
a smooth way with other capabilities, and they are used to build up a spatial
representation of the environment. Develop a control structure that integrates the
basic skills coherently. We can learn from primate systems [Cornog 1986; Ballard
1987] much about the form successful control systems take. For example, in the
human system the VOR is basic, but is overridden by the tracking system, which can
in turn be interrupted by the saccadic system. The capabilities are associated with
basically different modes of operation that must cooperate--for instance, optic flow is
not interpreted as a moving surface if it arises as the background of a tracked object.
The basic control structure must support perceptual tasks that have varying
demands for resources on the system, as well as provide a basis for a hierarchy of
plans and skills.

This year we have produced demonstrations of saccades, tracking, and vergence
using our "robot head," and we have explored control structures for real-time
following of several moving objects at once [Ballard et al. 19871. Figures 1 and 2
show our vision laboratory configuration and the binocular robot head.

2.1 Robot Head and Pipelined Image Processor Utilities

Both our parallel computers are complex pieces of hardware. We have hired a
full-time vision programmer who is working on the systems and utilities aspects of
both the MaxVideo and Butterfly systems.

The first project is to investigate how to get programs running on the Butterfly to
communicate with the MaxVideo hardware over the VME bus. This will enable us to
have multiple processes running on the Butterfly that control different operations on
the MaxVideo system.
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Figure 1: Vision and Robotics Laboratory Hardware

Figure 2: The Robot Head

Frequently, the output of a hardware package will appear as mysterious as the
"black box" which created it. Therefore, in order to take full advantage of the
capacity of an architectural design, it is first necessary to comprehend the reactions
to basic inputs.
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With this intent, the capabilities of the VFIRII board were explored. An
examination of actual bit patterns under a variety of test circumstances helped to
answer questions concerning the nature of previous outputs, while it broadened our
understanding of the designer's goal in adding various special features.

In particular, the linear nature of convolution was exploited to create arbitrarily-
sized templates by either cascading VFIRII boards or recirculating partial products
using the onboard delay compensation. Possible future applications of this feature
include large pattern recognition, differentiation, and faster processing times.

2.2 Spatio-temporal Feature Detectors

Another project is to investigate motion detection through the use of temporal
difference operators. The goal is to have the two robot eyes track a randomly shaped
and randomly patterned object as it moves across a randomly patterned background.
Normally if the object is not in motion then the eyes would not detect the object due
to its random pattern. However, when the object is in motion the temporal difference
operator will detect the leading and trailing edges of the object. This project would
then be integrated with the Rover project [Coombs and Marsh 1987; Ballard et al.
1987].

2.3 The Saccadic System

We have used portions of the MaxVideo family of hardware to implemeit, an
algorithm to track a gray-level-distinguishable object with a moving camera (Figure
2), and another algorithm to identify the gray-level-distinguishable objects in the
field of view of the camera and make the camera perform a saccadic motion to one of
them.

Further work, as part of a Master's thesis to derive depth information about
objects in the field of view by using information derived from images obtained from a
moving camera fixated on a point in the field of view, remains to be done. It awaits
the availability of software to control the Signal Processing board in the MaxVideo
hardware.

2.4 Stable Viewing and Multi-View Integration

One pilot project we completed was a view de-jitterer; it explored image
registration using projections for real-time computability. The task is to align an
image at time t with one from time t-1 so that any shifts of the camera are removed.
This is useful in many areas: in active vision, it can steady the picture for input to
higher-level routines; in large-scale mapping it can align overlapping pictures to
make a single larger picture with no noticeable joining line; and in a device such as
electronic binoculars or video carncras t can remove the jitter which is due to their
beinghand-held.
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The implementation had the further goal of working in real-time on the
MaxVideo hardware. To that end, the algorithm of using a row and a column
projection rather than the whole picture was used, reducing the computation at the
convolution step by hundreds of times. A first-cut version running on the Sun
worked fine, at a rate of about two frames per second, so it looked promising to speed
that up to 30 per second by using the MaxVideo hardware.

The underlying algorithm is essentially well-known in the literature, but was an
encouraging implementational exercise and yielded some important information
about our hardware.

2.5 Some Technical Details: by Steve Colwell

One paradigm for use of MaxVideo is simply as a frame grabber, reading the
frames into the Sun, and doing all the processing inside the Sun. This is in some
sense easier than using the MaxVideo hardware, mainly because the debugging and
development tools on the Sun are better than what is available when doing
algorithm development directly with the datacube boards. The speed that ought to be
achievable for this task is about .5 microseconds per 32 bit transfer, which is 8
megabytes/second, which is 32 512x512 frames per second.

Our first results were very slow as a result of using the pixel-by-pixel movement
instructions. They got better when we used the row-by-row block move routines, and
even better when we abandoned the suppiied routines and did the moves directly
from the memory-mapped VME bus address to the screen memory of the Sun.
However, even for this last case we only got three frames per second.

After many experiments and conversations with the designer of the board at
Datacube, we determined that it wasn't going to get any better, duc to n crmbination
of two problems. The first problem is that the MaxBox that we have doesn't have
the 32 bit VME bus option. This doesn't matter with most other datacube boards,
since they are only capable of 16 bit transfers anyway. In the case of the ROIStore
board, though, we could get twice as much transfer speed (up to 6 frames per second,
quite an improvement) by ordering the P2 bus option for the MaxBox.

The second problem is more technical. The cycle times we see on accesses to the
ROIStore are around 1700 ns, which is longer than is reasonable. The Sun itself only
takes 250 ns. That means the ROIStore is taking the rest; but how? The ROIStore
board is capable of a cycle speed of 800 ns. This is implemented by splitting up each
800-ns cycle into three equal slices, one of which is the VME bus cycle. If the request
from the Sun occurs at exactly the right moment, just when the ROIStore is ready to
service the Sun slice of the 800-ns cycle, the response of the ROIStore can be as fast
as 450 .is. However, if the Sun request comes just after its slice has gone by, the Sun
has to wait 800+450 = 1250 ns. Even this worst-case time, which is pretty
horrendous as these things go, is not as bad as what we see, and we should be seeing
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what the datacube engineer calls the "cycle" time of 800 ns anyway, not the worst
case time.

The reason for the extra delay is a classic example of non-communication
between design engineers. The interface board between the Sun and the MaxBox
takes 150 ns or so of delay, which is normally pretty fast. However, in this case, the
effect is to make the length of a move instruction be, in the best case, 450 ns
(minimum time from the ROIStore) + 150 ns (interface board) + 250 ns (Sun time)
= 850 ns. The next move instruction, which comes immediately afterward, has to
wait for the next cycle to come around, a long 750 ns, so the total cycle time is 850 ns
(actual reasonable delay) + 750 ns (designer obtusity delay) = 1600 ns. Obviously,
the main thing is that we shouldn't expect to do ROIStore-to-Sun accesses in
anything like real time (most people wouldn't anyway). For those of us who still
prefer to load things into the Sun to do algorithm design and such, the top speed from
the ROIStore is three frames per second. Of course, there are some tricks left.

First, we can order the P2 bus option for our MaxBox. This is a cheap way to
double the transfer speed by doing one 32-bit transfer every 1600 ns instead of one
16-bit transfer each 1600 ns. Second, we could load smaller pictures than 512x512.
We have random access to any part cf the image that is desired, so just taking the
middle 256x256 part of the screen would be four times faster, or twelve frames per
second. We don't really get 512x512 pixels anyway, since a border on the left and top
of the picture of something less than 50 pixels is left blank. Third, we could read
through a different device than the ROIStore. The Euclid board, our signal
processing computer board in MaxVideo, has memory with a 150-ns cycle time
rather than 800 ns, so accesses to it ialthough restricted to 16 bits) can occur about

twice as fasL. That means that it would be about the same as the ROIStore
performance would be with the 32-bit bus. We have now begun to run applications
on the Euclid board, so this option is a realistic one.

In the process of learning all this, we developed some general tecnniques. A
picture can be put up on the Sun screen in 40 ms instead of the 200 ms it takes using
the block moves that Sun provides. Any size frame can be read directly from the
ROIStore as one routine instead of using the block moves that datacube provides. A
value mapping table which converts values from the 0-255 range of the data cube to
a logarithmic 0-127 range for display on the Sun is available, along with the code to
load it into the DigiMax hardware so no cpu time need be used to implement the
table lookups.

3. Parallel Object Recognition: by Paul Cooper

This year I completed the implementation of my stereo algorithm. My main
activity has bett, in the formal analysis of my connectionist parallel object
recognition algorithm.
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C.1 Related Work

Early in the year (during April and May) I completed my work on stereo from
structure. This work is available as TR 216, "Order and Structure in Stereo
Correspondence" [Cooper 1987a], which has been submitted to the International
Journal of Computer Vision.

During the spring I also built a utility which will print grey-scale images on our
laser printers, using half-toning. The utility also allows such images to be included
in troff and TeX documents (such as TR 216). During the early summer I attempted
to develop a coherent framework for uncertainty in the representation and
recognition of structure. Unfortunately, this endeavour was overly ambitious, and
had to be abandoned.

Instead, I began to focus my efforts in two directions: object-model matching with
uncertainty, and using domain knowledge explicitly to constrain the recognition
indexing problem. To investigate the use of domain knowledge, I developed a
grammar which describes all allowable tinkertoy configurations that yield models of
animals. In future work, this grammar will be used to assist in controlling the
recognition process. Figure 3 shows example domain objects, early visual processing,
and the catalog of possible objects.

My main task in the fall has been analyzing and proving the computational
characteristics of the connectionist network we developed in earlier work, which
does graph matching in parallel [Cooper and Hollbach 1987]. A paper that describes
this work was recently completed [Cooper 1987b], and is now described briefly.

3.2 Structure Recognition by Connectionist Relaxation

In summary, the paper describes a connectionist implementation of discrete
relaxation, for labeled graph matching. The application is fast parallel indexing
from structure descriptions. Complexity considerations limit the network to the
detection and propagation of unary and binary consistency constraints.

The convergence of the algorithm is proved. The desired behavior of the
algorithm is formally specified, and the fact that the network correctly computes this
is proved. Explicit and exact space and time resource requirements are developed.

The general utility of discrete relaxation is well known, and the abstract form of
the algorithm is well understood. But the specifics of the connectionist
implementation illuminate some interesting issues.

First, with the connectionist implementation the complexity of the algorithm can
be made very precise. The exact space and time requirements of the algcrithm have
been specified. The explicit nature of the implementation makes extending the
algorithm in parallel trivial, and its resource requirements remain explicit and easy

7B-7



::F1,Ak &.j.-

a) b)

i00J

13 11
19( 20& 206

c)

Figure 3: (a) Processing steps for tinkertoy objects; (b) input and processed tinkertoy objects; and
(c) the catalog of principal views.

to compute. The theoretical speed one expects to obtain with massively parallel
implementations of algorithms is provably present. With many implementations of
relaxation such issues are not strongly addressed.

Second, it is interesting to observe how working within the connectionist
paradigm constrains a design. The requirement that there be no interpreter means
each relevant value must be represented by a unit. This suggests, in the context of
the graph matching problem, that representing matchings for ternary or higher
relations would become prohibitively expensive. Furthermore, bandwidth
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limitations on the messages the units can send each other (inspired by neurual
communication bandwidth limitations) restrict the character of what can be
computed with unary and binary constraints. For example, it would be difficult to
modify the algorithm so that more than one unary predicate could be used (like
[Kitchen and Rosenfeld 1979] do). Likewise, bandwidth limitations restrict the
potential utility of the unary predicate itself. Interestingly, the overall resource
requirements of the algorithm suggest an upper bound on the number of parts a
structure representation can have before a more efficient representation such as a
hierarchy is required. (Structure representations with more than a small constant
number of parts, like in the small double digits, would become unwieldy )

The paper contains somewhat stronger and more specific results about what can
be matched than are typically found. These results were obtainable because the
exact nature of the algorithm was very tightly constraineu (e.g., only unary and
binary constraints, with propagation occurring only under very specific conditions).

The particular performance characteristics of the algorithm suit the task
problem--fast indexing from structure descriptions--very well. Complete recognition
(with verification) requires that a complete correspondence between object and
model be established, and this algorithm is unable to do so. But it can be used to
filter out large numbers of candidates quickly for recognition, so later more
expensive processes can be more confidently and efficiently applied.

Finally, the implementation and proof provide a basis from which to investigate
more general indexing problems. In future work I plan to investigate indexing from
structure with uncertain and inexact structure descriptions. Connectionist
implementations seem to be natural hosts for such problems.

4. Principal View Geometry

Our work in representation of objects for recognition has yielded the following
results so far.

1) Theoretical and algorithmic results for principal view calculations on planar
polyhedra, including an algorithm to generate all spatial volumes from which
different principal views are seen [Watts 1987].

2) Theoretical and algorithmic results for principal view recognition using
connectionist networks and objects characterized by their structure (tinkertoy
objects) [Cooper and Hollbach 1987; Cooper 1987b]. Figure 4 shows some
images used by the system and its catalog of potential views.

3) Theoretical and algorithmic results for the calculation of principal views for
tinkertoy, pure blob, and pure stick objects. One result is that there are at most
O(n 4 ) different views (where view equivalence is defined by the overlaps of
individual blobs or sticks in the projection) on any viewing sphere (i.e., for
orthographic projection, or for perspective projection of any focal length). This
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result is consistent with the analogous result for convex polyhedra. We have
no analogous result for the total number of principal view regions in all of
viewing space (this is known to be (n3 -5n)/6 for convex polyhedra, but it seems
likely that the analogous n6 bound will hold up.

The algorithmic part of the work creates the views themselves, and for each
equivalent view, gives the approximate fraction of the viewing sphere that
yields the view. The program works by recursively splitting facets of a
viewing polyhedron if views from the facet corners differ. Results can thus be
obtained for any level of resolution. Analytic computation of the viewing
volumes that yield equivalent views, as in [Watts 1987], has proved
prohibitively complex. View equivalence is flexibly described as the
equivalence of any combination of stick-stick, blob-stick, and blob-blob
incidence matrices. Thus views may be generated for a view catalog, and rated
in quantitative order of likelihood. This quantification will be useful in
planned future work in which strategies for recognition are precompiled based
on information theoretic criteria [Swain 1987]. Figure 4 shows some output
from the principal view analyzer.

Our work has so far determined that though there are a large number of
"different" views, there may be a high variance in their probability. For the
horse of Figure 4, there are 35 different views at medium resolution, but one
(no blob or stick adjacencies) accounts for 63% of the viewing sphere, with
none of the other 34 views accounting for more than 4%. The view catalog will
be useful for creating catalogs as in Figure 3. The quantification of
probabilities will be useful in planned future work in which strategies for
recognition are precompiled based on information theoretic criteria [Swain
1987]. However, this "probability" figure seems to have little to say about
qualitative appearance differences, saliance, or information content of the
view.

5. Markov Random Fields for Evidence Combination

Paul Chou and Rajeev Raman have recently developed a new algorithm for image
segmentation [Chou and Raman, 19871. A Markov Random Field (MRF) is used to
represent observational data and a priori knowledge about image edges. The new
Highest Confidence First (HCF) algorithm approximates the minimum energy
labeling of the MRF, producing an interpretation of the positions of edges that is
nearly optimal under the Maximum A Posteriori (MAP) criterion. The solutions
constructed compare favorably with ones produced by pre-existing methods and the
computation is more predictable and less expensive.

The solutions to many computer vision problems can be formulated as the
minimum energy states of thermal dynamic systems. However, the complexity of the
energy functions prevents the analytic solution of the minimization problems.
Figure 5 illustrates the use of the new method, the HCF algorithm, for
approximating the optimal solution to the image segmentation problem [Chou and
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Figure 4: (a) The viewing
polyhedron generated by the
algorithm. The blob and
stick "horse" is at the center.

(b) Two of the views.

(c) The approximate portions
of the viewing sphere that
yield the views.
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Raman 1987; Chou, Brown and Raman 1987]. In this method, a dynamic stability
measure based on observations and prior knowledge determines the order in which
pieces of the image are examined. The input (Figure 5a) is a camera image of four
blocks. The initial likelihoods that a piece of an image belongs to a boundary
between segments (e.g., between blocks or between figure and background) is shown
in Figure 5b. These likelihoods are generated from the camera image under specific
assumptions about the imaging process, noise, and the behavior of segment
boundaries [Sher 1987b]. They are combined with prior knowledge modeled as
Markov Random Fields, resulting in the a posteriori probability of the possible
segmentations. The results of the HCF algorithm (Figure 5d) are compared with the
results of a conventional technique based on simulated annealing (Figure 5c). The
HCF algorithm produces better results. It requires fewer, and more predictable,
computational resources than the annealing technique. (An interactive general-
purpose MRF simulator, with extensive graphics and menu-driven control, is shown
in the background of the HCF results. This package has been used to compare the
performance of various relaxation algorithms based on MRFs.)

MRFs provide a mechanism for fusing several disparate sources of information
[Chou and Brown 1987]. In Figure 6, noise-corrupted orientation and range data
images (Figure 6a) provide uncertain and incomplete evidence about the
discontinuities or boundaries in the scene. The interactions between image features
(edges, boundaries, etc.) are represented as MRFs. The initial MRF encodes only
general spatial properties like continuity of edges, and nothing about the location of
.particular edges. As each source of information is added, its observations are fused
with the current MRF to produce a new, a posteriori, MRF that has a stronger bias
for specific image features in specific locations. The results of fusing a single source
of image data with the initial MRF, followed by running the HCF algorithm to
determine the minimal configuration, are shown in Figure 6b. A complete
segmentation is achieved (Figure 6c) when all three sources of data are fused with
the initial MRF before running the HCF algorithm.

6. Parallel Evidence Combination: by Paul Chou and Bob Potter

As the algorithm is currently implemented, all of the observational data must be
available before interpretation can begin. Potter's current project is to implement
the sources of observational data as separate processes on the Butterfly
multiprocessor and investigate the performance of algorithm when the data is made
available dynamically. In real-world applications, observational data from separate
sources will not be produced synchronously, and decisions will be called for even
when only partial information is available. If the HCF algorithm performs well
under such conditions, it will merit serious consideration in future vision systems.

6.1 Encoding Knowledge in MRFs

By the Hammersley-Clifford theorem, for an MRF X on a lattice S with a
neighborhood system F
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Figure 5: (a) Input image. (b) Initial boundary likelihoods. (c) Output of simulated annealing

technique for boundary location. (d) Output of HCF technique for boundary location.
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Figure 6: (a) (top row) Noisy synthetic input (depth and orientation). (b) (sePcond row) Individual
processing of inputs. (c (at bottom) Fusion of information from the three sensors.
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where (a is a solution from the solution set Q, Z is a constant normalization factor,
and T is the temperature. The energy function U() is of the form

U ()= 5- VC (W)
cEC

where C denotes the set cliques (totally connected subgraphs of 1). Vc represents the
potential function of the clique c. The MRF can be characterized by specifying the
potential functions Vc for each clique. Chou and Raman define a set of cliques that
relate pixel boundaries to their spatial neighbors. Each configuration of adjacent
boundaries (such as T join, corner, close parallel or colinear) is assigned a potential
that represents a priori knowledge about edge behavior.

The a priori knowledge encoded in the MRF can be combined with image
observations with Bayes' rule:

I(&4= P(W) P (0 10o)

where 0 denotes the image observations. With the assumption that

P OW€ ) = P P (o t %1

sES

we obtain a combined energy function

Uo (J)= Z V ((o)-T7 1nP(O IW, )
cEC sES

that includes both the a priori and a posteriori knowledge. The probabilities
P(Osws) are obtained from a boundary detector designed by David Sher [Sher
1987a].

6.2 The Highest Confidence First Algorithm

The HCF algorithm represents decisions for each lattice element (inter-pixel
boundary) by one of three labels: EDGE, NON-EDGE, and UNDECIDED.
Individual elements make or change their decision in an order based on a dynamic
stability measure, with the element that has the most to gain deciding first. The
stability measure is simply the energy difference between the element's current
decision and its lowest possible one. When one element changes its decision, the
stability values of its neighbors are updated according to the MRF formulation given
above, and the new least stable element is permitted to change. Eventually every
element will reach a stable state. In practice only about 1% of the elements have to
change their initial decision.
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6.3 Implementation: by Bob Potter

I will be implementing the HCF algorithm on the BBN Butterfly parallel
processor using the Structured Message-Passing (SMP) programming environment
[LeBlanc et al. 1986]. The a posteriori knowiedge sources will be separate processes
that can be configured to produce their data in various ways: by scanline, by region,
or randomly pixel by pixel. The HCF algorithm process will always attempt to
maintain a consistent interpretation of the available data. The knowledge sources
themselves are not the focus of this project and initially will simply be dummies that
supply pre-computed data. The program will be written so that data from the
MaxVideo frame-rate pipelined image processing hardware will be easily
accommodated. The output of the program will be to a graphic display on a Sun.

Most of the code for this implementation will come directly from the
segmentation simulator for the Sun written by Chou and Raman. My programming
contribution will be porting the program to the Butterfly, and writing routines to
manage the processes, to communicate pre-computed data from the Sun to the
knowledge sources, and to communicate the results back to the Sun. So far I have
skeleton routines to handle these Butterfly-specific tasks. My experimental
contribution will be the investigation of the performance of the HCF algorithm
under several different conditions of data arrival. We are currently planning that
data from:

1) random pixels arrive together;

2) scanlines arrive together;

3) scanlines arrive asynchronously;

4) 2D patches of image arrive together;

5) 2D patches of image arrive asynchronously.

We expect the HCF performance to degrade when less than maximal information
is available for a decision. The interesting questions are how the performance falls
off with loss of spatial coherence and loss of sensor simultaneity in the data.
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Abstract
Here. I address the problem of combining output of several detectors for the same feature of an image. I
sho% that if the detectors return likelihoods I can robustJ combine their outputs. The combination has the
ad%.antages that:

* The confidences of the operators in their own reports are taken into account. Hence if an operator is

confident about the situation and the others are not then the reports of the confident operator dominates
the decision process.

" A priori confidences in the different operators can be taken into account.

" The work to combine 'N' operators is linear in "N'.

This theory has been applied to the problem of boundary detection. Results from these tests are presented
here.
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and who could forget Jerry Feldman. This work was supported by the Defense Advanced Research Projects
Agency U. S. Army Engineering Topographic Labs under grant number DACA76-85-C-0001. Also this
work was supported by the Air Force Systems Command. Rome Air Development Center. Griffiss Air

Force Base. New York 13441-5700. and the Air Force Office of Scientific Research. Boiling AFB. DC
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1. Introduction
Often in computer vision one has a task to do such as deriving the boundaries of objects in an

image or deriving the surface orientation of objects in an image. Often one also has a variety of
techniques to do this task. For boundary detection there are a variety of techniques from classical
edge detection literature [Ballard82] and the image segmentation literature e.g [Ohlander79].
For determining surface orientation there are techniques that derive surface orientation from
intensities [Horn70] and texture RIkeuchi80] (Aloimonos851. These techniques make certain
assumptions about the structure of the scene that produced the data. Such techniques are only
reliable when their assumptions are met. Here I show that if several algorithms return likelihoods
I can derive from them the correct likelihood when at least one of the algorithms' assumptions are
met. Thus I derive an algorithm that works well when any of the individual algorithms works
well.

The mathematics here were derived independently but are similar to the treatment in
[Good501. and [Good83], using different notation. To understand my results first one must
understand the meaning of likelihood.

2. Likelihoods

In this paper I call the assumptions that an algorithm makes about the world a model. Most
models for computer vision problems describe how conigurations in the real world generate
observed data. Because imaging projects away information, the models do not explicitly state how
to derive the configuration of the real world from the sensor data. As a result, graphics problems
are considerably easier than vision problems. Programs can generate realistic images that no
program can analyze.

Let 0 be the observed data, f a feature of the scene whose existence we are trying to
determine (like a boundary between two pixels) and M a model. Many computer vision problems
can be reduced to finding the probability of the feature given the model and the data, P(f10&M'.
However most models for computer vision instead make it easy to compute P(OJf&M). I call
P(OJf&Mt (inspired by the statistical literature) the likelihood of f given observed data 0 under
M. As an example assume f is "the image has a constant intensity before noise". M says that the
image has a normally distributed uncorrelated (between pixels) number added to each pixel (the
noise). Calculating P(OIM&fP is straight-forward (a function of the mean and variance of 0).

A theorem of probability theory, Bayes' law, shows how to derive conditional probabilities for
features from likelihoods and prior probabilities. Bayes' law is shown in equation 1.

P(OIf&M)P(tlM)
P(fjO&M)= P(Of&M)P(f1M+P(0I -f&M)P(-fiM) (1)

f is the feature for which we have likelihoods. M is the domain model we are using. P(Olf&M) is
the likelihood of f under M and P(IM, is the probability under M of f

For features that can take on several discrete mutually exclusive labels (rather than just true
and false) such as surface orientation (which can be a pair of angles to the nearest degree or "not
applicable" (at boundaries)) a more complex form of Bayes' law shown in equation 2 yields
conditional probabilities from likelihoods and priors.
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P(OIl&M' P4
SP(OI &MP,.l IM, (2)

I is a label for feature f and Lf) is the set of all possible labels for feature I.

Another important use for explicit likelihoods is for use in Markov random fields. Markov
random fields describe complex priors that can capture important information. Several people have
applied Markov random fields to vision problems [Geman84]. Likelihoods can be used in a Markov
random field formulation to derive estimates of boundary positions [Marroquin85b] [Chougr]. In
[Sher86] and [Sher87] I discuss algorithms for determining likelihoods of boundaries.

Let us call an algorithm that generates likelihoods a likelihood generator. Different models
lead to different likelihood generators. The difference between two likelihood generators' models
can be a single constant (such as the assumed standard deviation of the noise, or the two likelihood
generators' models may not resemble each other in the slightest

Consider likelihood generators L, and L2 with models M, and M2 and assume they both
determine probability distributions for the same feature. L, can be considered to return the
likelihood of a label I for feature f given observed data 0 and the domain model MI Thus LI
calculates P(Of=&M 1). Also L2 calculates POIf=&M 2). A useful combination of LI and L2

is the likelihood detector that returns the likelihoods for the case where M, or M2 is true Also the
prior confidences one has in M , and M2 should be taken into account.

This paper studies deriving P(Oif-1&(M IJM 2 i). Note that if I can derive rules for
combining likelihoods for two different models then by applying the combination rules N times, N
likelihoods are combined. Thus all that is needed is combination rules for two models.

3. Combining Likelihoods From Different Models
To combine likelihoods derived under M, and M2 an examination of the structure and

interaction of the two models is necessary. MI and M2 must have the same definition for the
feature being detected. If the feature is defined differently for MI and M2 then M, and M2 are
about different events, and the likelihoods can not be combined with the techniques developed in
this section.

Thus the likelihood generated by an occlusion boundary detector can not be combined with
the likelihood generated by a detactor for boundaries within the image of an object ( such as
corners internal to the image). A detector of the likelihood of heads on a coin flip can not be
combined with a detector of the likelihood of rain outside using this theory. (However easy it may
be using standard probability theory.)

If the labeling of a feature f implies a labeling for another feature g then in theory one can
combine a f detector with a g detector by using the g detector that is implied by the f detector. As
an example a region grower could be combined with a boundary detector since the position of the
regions implies the positions of the boundaries.

3.1. Combining Two Likelihoods
The formula for combining the likelihoods generated under MI and Vf2 requires prior

knowledge. Necessary are the prior probabilities PiM 1 and P(M2) that the domain models MI and
M2 are correct as well as P(M1 &M)-. Often P(M&Mz) = 0, When this occurs the two models
contradict each other. I call two such models disjoint because both can not describe the situation
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simultaneously. If M, is a model with noise of standard deviation 4±c and M2 is a model with
noise of standard deviation 8±e then their assumptions contradict and P, 1&M2 ' = 0.

Prior probabilities for the feature labels under each model (P'f=lIM 1) and Prf=IM 2') are
necessary If PM 1 &Mf2 *0 then the prior probability of the feature label under the conjunction of

M, and M 2 (P(f=lM 1" 2)&M and the output of a likelihood generator for the conjunction of the
two models (.PtOlf=l&"M &,211) are needed. If I have this prior information I can derive
PtOlf=l&M 1 "M 2 )

If I were to combine another model, M 3, with this combination I need the priors PM' 3).
P(fJM3a, P(M 3 &,M 1vM 2 ) and POfjMA&lMlM 2 P. To add on another model I need another 4
priors. Thus the number of prior probabilities to combine n models is linear in n.

Thus all that is left is to derive the combination rule for likelihood generators given this prior

information. The derivation starts by applying the definition of conditional probability in equation

3
P(O&f= l&M (M t2

P(OIf=I&(M IvM 2 )) = P(f=I&(M JM2) (3)

The formula for probability of a disjunction is applied to the numerator and denominator in

equation 4,

P(O&f=l&M 1)+P(O&f=I&M 2)-P(O&f=l&M &M 2 ' (

P~f=l&M 1)+P(f=I&M 2)-P(f=l&M A&M2)

In equation 5 the definition of conditional probability is applied again to the terms of the
numerator and the denominator

P(Of=l&M )P(f=l1M 1 )P(M,

P(Off=l&M 2 )P(f=11M 2 )P(M 2 )

P(Of=1&M I&M 2)P(f=IIM &M 1 )P M &M 2 '
P'f =11-%f I P MC+P~f=ljM 2 )PlM2 ,-P(f=lfM &M 2 P(MA-& 2

Different assumptions allow different simplifications to be applied to the rule in equation 5.
If the two models are disjoint equation 5 reduces to equation 6.

IP(OIf= 1&M 1)P(f = 1M 1)P(M 1)

P(Olf =&M 2 )P(f=IIM 2 )P(M2 ) (6)
P(Of=l&(M liM2 )) = Pf=11M )P(Ml)+P(f=IIM 2 )P(M 2 )

Another assumption that simplifies things considerably is the assumption that prior probabilities
for all feature labelings in all the models and combinations thereof are the same I call this
assumption constancy of prors. When constancy of priors is assumed
Pf=/IM 1 = Prf=IIM 2' = P'f=!IM I&M2.. Making this assumption reduces the number of

priors that need to be determined. Since determining prior probabilities from a model is sometimes

a difficult task the constancy of priors is a useful simplification. With constancy of priors equation
5 reduces to equation 7.
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PtOjf=l&M )P(M1 J

P(OIf=l&M 2)P(M 2)

PtOIf=1&.M 1'M2W) = P(O l&M &M 2 )M 1 &M 2 )

ThOf!& M ~M~f = P(M 1) P(M 2 -P(M 1&M2 1

Equation 6 with constancy of priors reduces to equation 8.

P(OIf=I&M )P(M 1)
+

P(O If=& -- 2 P(M2 )
PO~f=&M 1 ~ 2)= PM1 ) +P(M2)

Thus equation 8 describes the likelihood combination rule with disjoint models and constancy of
priors.

3.2. Understanding the Likelihood Combination Rule

The easiest incarnation of the likelihood combination rule to understand is the rule for
combining likelihoods from disjoint models given constancy of priors across models (equation 8).
Here the combined likelihood is the weighted average of the likelihoods from the individual models
weighted by the probabilities of the models applying. (The combined likelihood is the likelihood
given the disjunction of the models).

If models MI and M2 are considered equally probable and the likelihoods returned by MI's
detector are considerably larger than those of M2 's detector then the probabilities determined from
the combination of MI and M 2 are close to those determined from Mi. Thus a model with large
likelihoods determines the probabilities. To illustrate this principle consider an example.

Assume that a coin has been flipped n+1 times. The results of flipping it has been reported
for the first , times. The task is to determine the probability of heads having been the result of
the n+15 flip. Consider the results of each coin flip independent. Let MI be the coin being fair so

that the probability of heads and tails is equal. Let M 2 be that the coin is biased with the
probability of heads is v and tails 1-w with v being a random choice with equal probability
between p and 1 -p. Hence the coin is biased towards heads or tails with equal probability but the
bias is consistent between coin tosses. The probability of heads remains the same for all coin tosses
in both models. MI and M2 are disjoint (the coin is either fair or it isn't but not both) and the
prior probability of a flip being heads or tail is the same for both, .5.

Under MI the probability of each of the possible flips of n + 1 coins is 2" -. Under M 2 the

probability of n + 1 flips of coins with h heads and t = n + 1 - h tails is:

Ip(1 a-p), + *pt(l -p)h

Let n =2 and p =.9. Assume the first two flips are both heads. Let H be "the third flip was heads"
and T be "the third flip was tails." The likelihood of H given the observed data is the probability
of all 3 flips being hl..ds divided by the probability of the third flip being heads. The likelihood of
T given the observed data is the probability of the first 2 being heads and the 3rd tails divided by
the probability of the third flip being tails.

Under MI the probability of all 3 flips being heads is 0.125 and the probability of a flip being
heads is 0.5 thus the likelihood of H is 0.25 The likelihood of T is 0.25 by the same reasoning
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Applying Bayes' law to get the probability of H under ML one derives a probability of .5 .

Under M2 the probability of all 3 flips being heads is 0.365 and the probability of a dip being

heads is 0.5. Thus the likelihood of H is 0.73 Under M 2 the probability of the first two being
heads and the third being tails is 0.045 and the probability of a flip being tails is 0.5. Thus the
likelihood of T is 0.09. Applying Bayes' law under -W2 a probability of H being 0.89 is derived.

If M, and M2 are considered equally probable then the combination of the likelihoods from

the two models is the average of the two likelihoods. Thus the likelihood of H for this combination
is 0.49 and the likelihood of T is 0.17 (likelihoods don't have to sum to 1). Bayes' law combines
these probabilities to get 0.74 for the 3' flip to be heads.

The table in figure 1 describes combining various M2's with different values of p with .Md, for
the different combinations with n = 4

Observed Combined with M, Likelihood of H Likelihood of T Probability of H

Coin Flips or just M2  p =.6 p =.9 p =.6 p = .9 p = .6 p =. 9

HHHH Just M 2  0.088 0.5905 0.0672 0.0657 0.567 0.8999

Combined 0.07525 0.3265 0.06485 0.0641 0.537 0.8359

KHT Just M 2  0.0672 0.0657 0,0576 0.0081 0.5385 0.8902
Combined 0.06485 0.0641 0.06005 0.0353 0.5192 0.6449

HHTr Just M 2  0.0576 0.0081 0.0575 0.0081 0.5 0.5
Combined 0.06005 0.0353 0.06 0.0353 0.5 0.5

HT'I Just M2  0.0576 0.0081 0.0672 0.0657 0.4615 0.1098
Combined 0.06005 0.0353 0.06485 0.0641 0.4808 0.3551

Just M 2  0.0672 0.0657 0.088 0.5905 0.433 0 1001
Combined 0.06485 0.0641 0.07525 0.3265 0.4629 0.1641

Figure 1: Result of likelihood combination Rule

Look at the probabilities with p=.9 and the observed data is HHHH. For this case the
observed data fits M2 much better than M, and the probability from combining M, and M2 is close
to the probability resulting from using just M2, .9 If we had a longer run of heads the probability
of future heads would approach exactly M 2's prediction, .9. On the other hand if we had a long run

of equal numbers of heads and tails the probability of future heads would quickly approach the
prediction of MI, .5. When the observed data is HHHT the observed data fits M1 about as well as
M 2 and the resulting probability is near the average of .5 predicted by M, and 0.8902 predicted by
M2. Thus when the observed data is a good fit for a particular model (like M 2) the probabilities
predicted by the combination is close to the probabilities predicted by the fitted model. If two

models fit about equally then the result is an average of the probabilities'.

4. When No Model Applies

Given a set of likelihood generators and their models, using the evidence combination
described in section 3 we can get the likelihood for the feature labelings given that at least one
model applies. Thus if we have likelihoods of a boundary given models with the noise standard

'However the feature that the decision theory predicts a not the average of the features predicted under the two
different models in genera]
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deviations near to 4. 8 and 16 in them we can derive the likelihood of a given the noise standard
deviation is near to 4 or 8 or 16 (no matter which). Thus we can derive the probability distribution
over feature labelings given that at least one of our models applies. However what we are trying
to derive is the physical probabLilty dtstrLbution over the feature labelings. This is the probability
distribution over feature labels given the observed data (estimated by the long run frequencies over
the feature labels given the observed data). The problem is that there may be a case where none of
the models assumptions is true. In the Venn diagram of figure 2 each set represents the set of
situations where a model's assumptions are true. The area marked NO MODEL is the set of
situations where all the models fail.

M3
U

SM2  
NO MODEL

Figure 2: Venn Diagram of Models

What should the likelihood of a feature label be if no model applies? To answer this question
I examine the companion question of what should the probability of a feature label be if no model
applies. Assume a prior probability for the label is available. If a posterior probability is different
from a prior probability for the feature then information has been added to get the posterior. (Only
information can justify changing from the prior.) Since having no model means intuitively having
no information then the posterior should be the same as the prior. If and only if the likelihoods of
all feature labels are equal, the posterior probability is the same as the prior. Hence the
likelihoods of the feature labels should be equal for any particular piece of observed data. In this
section I assume a prior proability distribution is a available over feature labels. If no such
distribution is available an uninformative prior can be constructed [Frieden85].

To constrain the problem further, consider whether any piece of observed data should be more
probable than any other when no model applies It seems unreasonable that one could conclude
that some observations are more probable than others without any model of how those observations
were produced. Hence all the likelihoods should be equal This constraint is sufficient to
determine the likelihoods when no model applies. I think that this solution minimizes cross
entropy with the prior (since it returns the prior) (Johnson85].

To derive the physical probability distribution over feature labels, the "no model" likelihoods
should be combined with the likelihoods derived for the models. The probability of each of the
models and their combinations must have been available to use the combination rules from section
3. Hence the probability that one or more of the models applies is known. The probability of no
model is 1 minus that probability. The conjunction of some model applying and no model applying
has 0 probability. Hence combination rule 6 can be applied to derive the likelihoods under any
conditions from the likelihoods for any model applying.

As example consider the problem of seeing HHI{H and trying to derive the probability of a
fifth head given the equally likely choices that the coin is fair or is biased to .9 (biased either for
heads or tails with equal probability). The combined likelihood of H is 0.3265 (from figure 1). The
combined likelihood of T is 0.0641. As an example, assume that the probabilities that the
assumptions of M, were true was 0.4 and similar for M 2. Then 0.4 of the time we feel the coin is
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fair, 0 4 of the time we feel it has been biased by 0 9, and 0.2 of the time we have no model about
what happened. The likelihood of HHHH under **NO MODEL" is .0625 regardless of H or T 'Since
the likelihood of all 4 coin flip events are equal and must sum to 1). Combining the "NO MODEL"
likelihoods with likelihoods of 0.2737 for H and 0.06378 for T (see figure 1), the probability of H
from applying Bayes' law to these likelihoods is 0.811. This probability is somewhat nearer to .5
than the probability of 0.8359 derived without taking the possibility of alU the models failing into
account

Taking the possibility of all models failing lends certain good properties to the system.
Probabilities of 0 or 1 become impossible without priors of 0 or 1. Thus the system is denied total
certainty. Numbers near 0 or 1 cause singularities in the equations under finite precision
arithmetic. Total certainty represents a willingness to ignore all further evidence. I find that
property undesirable in a system. Denying the system total certainty also results in the property
that the system must have all probability distribution over feature labels between E and 1 - e for
an c proportional to the probability that no model applies. Thus there is a limit to how certain our
system is about any feature labeling in our uncertain world.

5. Results
I have applied this evidence combination to the boundary detection likelihood generators

described in (Sher87]. Here I prove my claims that the evidence combination theory allows me to
take a set of algorithms that are effective but not robust and derive an algorithm that is robust.
The output of such an algorithm is almost as good as the best of its constituents (the algorithms
that are combined).

5.1. Artificial Images
Artificial images were used to test the algorithms described in section 3 quantitatively. I used

as a source of likelihoods the routines described in LSher87,. Because the positions f the
boundaries in an artificial image are known one can accurately measure false positive and negative
rates for different operators. Also one can construct artificial images to precise specifications The
artificial images I use is an image composed of overlapping circles with constant intensity and
aliasing at the boundaries shown in figure 3.
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Figure 3: Artificial Test Image

The intensities of the circles were selected from a uniform distribution from 0 to 254. To the
circles were added normally distributed uncorrelated noise with standard deviations 4, 8, 12, 16,
20, and 32. The software to generate images of this form was built by Myra Van Inwegen working
under my direction. This software will be described in an upcoming technical report.

In figure 4 I show the result of applying the detector tuned to standard deviation 4 noise to
the artificial image with standard deviation 12 noise added to it. In figure 5 1 show the result of
applying the detector tuned to standard deviation 12 noise to an image with standard deviation 12
noise added to it. In figure 6 I show the result of applying the combination of the detectors tuned
to 4, 8, 12, and 16 standard deviation noise. The combination rule was that for disjoint models
with the same priors. The 4 models were combined with equal probability. These operator outputs
are thresholded at 0.5 probability with black indicating an edge and white indicating no edge.
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a: Image with (r12 noise b: Output of cr=4 detector
Figure 4: a= 4 detector applied to 3 image with a= 12 noise

a: Imago with a=12 noise b: Output of a= 12 detector
Figure 5: v=12 detector applied to 3 image with v=12 noise
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a: Image with or=12 noise b: Output of combined detector
Figure 6: Combined detector applied to 3 image with a= 12 noise

Note that the result of using the combined operator is similar to that of the operator tuned to
the correct noise level. Most of the false boundaries found by the a=4 operator are ignored by the
combined operator.

Using this artificial image I have acquired statistics about the behavior of the combined
detector vs the tuned ones under varying levels of noise. Figure 7 shows the false positive rate for
the detector tuned to standard deviation 4 noise as the noise in the image increases 2. Figure 8
shows the false positives for the standard deviation 12 operator. Figure 9 shows the false positive
rate for the operator tuned to the current standard deviation of the noise. Figure 10 shows the
false poeitive rate of the combined operator. Figure 11 shows the superposition of the 4 previous
graphs.

2'he opersnar am thmaholded &L 0.5 pro abthity to uake the daimse about where the bxamdaaem am.
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Figure 11: False positives vs noise a for all operators

Note that the combined operator has a false positive rate that is as least as good as that of the
tuned operators.

I can also count false negatives. When I counted false negatives I ignored missed boundaries
that had an boundary reported one pixel off normal to the boundary (because such an error is a
matter of discretization rather than of a more fundamental sort). See figure 12 for an example of a
1 pixel off error.

MISS GOOD

MISS is recorded as a false negative
GOOD is recorded as a true positive

Figure 12: Example of one pixel off error

Figure 13 shows the false negative rate for the detector tuned to standard deviation 4 noise as
the noise in the image increases. Figure 14 shows the false negatives for the standard deviation 12
operator. Figure 15 shows the false negative rate for the operator tuned to the current standard
deviation of the noise. Figure 16 shows the false negative rate of the combined operator. Figure 17
shows the superposition of the 4 previous graphs.
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Figure 17: False negative rate for all operators

Here the combined operator is not always as good as the tuned operators. One must ask if
this tendency of the combined operator to miss edges offsets its better performance for false
positives. The next series of figures charts the total error rate for the same cases. Figure 18 shows
the error rate for the detector tuned to standard deviation 4 noise as the noise in the image
increases. Figure 19 shows the error rate for the standard deviation 12 operator. Figure 20 shows
the error rate for the operator tuned to the current standard deviation of the noise. Figure 21
shows the error rate of the combined operator. Figure 22 shows the superposition of the 4 previous
graphs.
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Thus the superiority of the combined operator for false positives dominates the false negative
performance and the combined operator minimizes the number of errors in total. These results are
evidence that my combination rule is robust.

5.2. Real Images

I have also tested these theories using two images taken by cameras. One of these images is
a tinker toy image taken in our lab. The other is an aerial image of the vicinity of Lake Ontario.
Figure 23 shows the result of the operator tuned to standard deviation 4 noise applied to the tinker
toy image and thresholded at 0.5 probability. Figure 24 shows the result of the operator tuned to
standard deviation 12 noise applied to the tinker toy image. Figure 25 shows the effect of
combining operators tuned to standard deviation 4, 8, 12 and 16 with equal probability.
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a: Tinkertoy Image b: Output of combined detector
Figure 25: Combined detector applied to tinkertoy image

Here, the result of the combined operator seems to be a cleaned up version of the standard
deviation 4 operator. Most of the features that are represented in the output of the combined
operator are however real feature' of the scene. The line running horizontally across the image
that the standard deviation 4 operator and the combined operator found is the place where the
table meets the curtain behind the tinkertoy. The standard deviation 4 operator was certain of its
interpretation and the other operators were uncertain at that point so its interpretation was used
by the combination.

The results from the aerial image are also instructive. Figure 26 shows the result of the
operator tuned to standard deviation 4 noise applied to the aerial image and thresholded at 0.5
probability. Figure 27 shows the result of the operator tuned to standard deviation 12 noise
applied to the aerial image. Figure 28 shows the effect of combining operators tuned to standard
deviation 4, 8, 12 and 16 with equal probability.
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a: Aerial Image b: Output of a=4 detector
Figure 26: v'=4 detector applied to aerial image
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a: Aerial Image b: Output of a= 12 detector
Figure 27: a= 12 detector applied to aerial image
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a: Aerial Iage b: Output of' combined detector
Figure 28: Combined detector applied to aerial image

The results from the combined operator are again a cleaned up version of the results from the
standard d,viation 4 operator. I believe this behavior occurs again because the features being
found by the standard deviation 4 operator are in the scene. However I do not have the ground
truth for the aerial image as I do for the tinkertoy image.

5.3. Future Experiments
Soon, I will apply my evidence combination rules to operators that make different

assumptions about the expected image intensity histogram. The operator used so far in my
experiments expects a uniform histogram between 0 and 254. Currently, a likelihood generator
has been built that assumes a triangular distribution with the probability of an object having
intensity less than 128 being one fourth the probability of an object having intensity greater than
or equal to 128. It is not clear that the probabilities calculated based on this assumption will be
significantly different from those based on the uniform histogram assumption. If there is no
difference in the output of two operators the effect of combination is invisible.

Larger operators will soon be available. The likelihoods generated based on these larger
operators would be finely tuned. The same evidence combination can be applied to these operators.

Likelihoods are used by Markov random field algorithms to determine posterior probabilities
[Marroquin85b] (Chou87]. Likelihoods resulting from my combination rules can be used by Markov
random field algorithms.

6. Previous Work
Much of the work on evidence and evidence combination in vision has been on high level

vision. An important Bayesian approach (and a motivation for my work) was by Feldman and
Yakimoisky (Feldman741. In this work Feldman and Yakimovsky were studying region merging
based on high level constraints. They first tried to find a probability distribution over the labels of
a region using characteristics such as mean color or texture. They then tried to improve these
distributions using labelings for the neighbors. Then they made merge decisions based on whether
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it was sufficiently probable that two adjacent regions were the same.

Work with a similar flavor has been done by Hanson and Riseman. In [HansonsO Bayesian
theories are applied to edge relaxation. This work had serious problems with its models and the
fact that the initial probabilities input were edge strengths normalized never to exceed 1. Of
course such edge strengths have little relationship to probabilities (a good edge detector tries to be
monotonic in its output with probability but that is about as far as it gets). In [Wesley82a] and
[Wesley82b] Dempster-Shafer evidence theory is used to model and understand high level problems
in vision especially region labeling. In [Wesley82b] there is some informed criticism of Bayesian
approaches. In fReynolds853 They study how one converts low level feature values into input for a
Dempster-Shafer evidence system.

In [Levitt85] Tod Levitt takes an approach to managing a hierarchical hypothesis space that

is baysian with some ad hoc assumptions. For the problem worked on here the paper would take
weighted sums of probabilities. He does not have any way of taking an operators self confidence
into account in the evidence combination. Since he was not approaching this problem in his paper
I can not fault it in this respect.

There has been much use of likelihoods in recent vision work. In particular work based on
Markov random fields Geman84] [Marroquin85al [Marroquin85b] use likelihoods. A Markov
random field is a prior probability distributipn for some feature of an image and the likelihoods are
used to compute the marginal posterior probabilities that are used to update the field. Haralick has
mentioned that his facet model [Haralick84] [Haralick86b] can be easily used to build edge
detectors that return likelihoods (Haralick86a]. I also have built boundary detectors that return
likelihoods and the results of using them is documented in (Sher871. Paul Chou is using the
likelihoods I produce with Markov random fields for edge relaxation [Chou871. He is also studying
the use of likelihoods for information fusion. Currently, he is concentrating on information fusion
from different sources of information.

7. Conclusion

I have presented a Bayesian technique for information fusion. I show how to fuse information
from detectors with different models. I presented results from applying these techniques to
artificial and real images.

These techniques take several operators that are tuned to work well when the scene has
certain particular properties and get an algorithm that works almost as well as the best of the
operators being combined. Since most algorithms available for machine vision are erratic when
their assumptions are violated this work can be used to improve the robustness of many
algorithms.
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Advanced Likelihood Generators
for Boundary Detection
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In [Sher85) I discussed the advantages of feature detectors that return likelihoods. In [Sher86, I
demonstrated some preliminary results with a boundary point detector that returns likelihoods.
Now I have developed boundary point detectors that have these properties:

• Return probabilities

" Can be combined robustly

" Potential sub-pixel precision

" Work with correlated noise.

* Can handle multiple gray-levels (tested with 255)

These detectors were applied both to aerial images and to test images whose boundaries are
known. They are compared to established edge detectors.

This work would have been difficult if not impossible without the active support and
encouragement of Chris Brown, my advisor, and Jerry Feldman. This work was supported by the
Defense Advanced Research Projects Agency U. S. Army Engineering Topographic Labs under
grant number DACA76-85-C-0001. Also this work was supported by the Air Force Systems
Command, Rome Air Development Center, Griffiss Air Force Base, New York 13441-5700, and the
Air Force Office of Scientific Research, Boiling AFB, DC 20332, under Contract No. F30602-85-C-
0008. This contract supports the Northeast Artificial Intelligence Consortium (NAIC).

7B-B-I



1. Introduction

Currently a great variety of tools are available for low-level vision tasks such as image
reconstruction and edge detection. It is time to devote attention to managing tools rather than
creating new ones.

Most of the tools for low level vision are algorithms for intermediate steps towards achieving
a goal. Here, we consider boundary point detection algorithms in these terms. These are
algorithms that try to determine if a boundary passes through a pixel (usually given a window on
the image). This task is similar to edge detection. Boundary point detection algorithms do not
exist to display outlines pleasing to the human eyes. Their output is meant to be input to a higher
level routine such as a shape recognition program or a surface reconstruction program.

Some desiderata for boundary point detection tools are:

(1) The output of a boundary point detector should be useful to as many higher level routines
as possible. If every higher level routine required a different boundary point detector then
our technology has not lived up to this desiderata.

(2) Boundary point detectors should accept as input the full range of data available. If a
boundary point detector only worked for binary data when gray scale data was available, it
has not lived up to thia desiderata

(3) Boundary point detectors should do work proportional to the size of the image.

(4) Boundary point detectors should do work proportional to the precision of the output. Thus
if subpixel precision is required, it should be made available with work proporti,,ual to the
required accuracy of boundaries reports.

(5) Boundary point detectors should be parameterized to features of the data. For example, if
the distribution of reflectances in the scene is known (the expected image histogram) then a
detector should be constructed that uses this information. Another example is if structure
in the noise is known (such as correlation) we should be able to take this structure into
account.

In this paper I describe an algorithm that fits these desiderata. It is a more advanced version
of the algorithm described in [Sher861. Also the results of tests run on this algorithm are reported
here and comparisons with established algorithms such as the Sobel, Kirsch and variants
thereupon. Tests will be done soon on more sophisticated operators.

2. Definition of Boundary

Before talking about boundary point detector it is a good idea to define exactly what a
boundary is. Vision problems involve imaging a scene. This scene could be an aerial view or a
picture of machine parts or an outdoors scene. This scene is filled with objects. In an aerial
photograph some of these objects are buildings, trees, roads and cars. Each of these objects is
projected into the observed image. Thus each object has an image that is a subset of the observed
image. Where the observed image of one object meets an observed image of another object there is
a boundary. such boundaries are sometimes referred to as occlusion boundaries.

3. Returning Probabilities

The algorithm I describe fulfills the first desideratum by returning probabilities that a
boundary is near a point. Here I justify returning probabilities and show how I can fulfill the first
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desideratum using them.

No tool for boundary point detection or any other low-level vision task ever does its task
aithout a significant probability of being wrong. Thus the error characteristics of a low-level
vision algorithm need to be considered. Intermediate-level vision algorithms differ in sensitivities
to different kinds of errors.

Consider boundary point detection. Regularization algorithms (interpolation algorithms)
[Boult6?1 suffer more from missing a boundary point than from having extra ones. When a
boundary point is missed regularization algorithms try to smooth over the boundary with
disastrous results. Hough transform techniques often work effectively when the set of boundary
points detected is sparse because the work a hough transform technique does is proportional to the
size of that set.

Another reason that Hough trinsform techniques do well with sparse data is that they are
mode based. Thus Hough transform techniques are robust when feature points are left out and
when there are outlying data points. The robustness of the Hough transform is described in detail
in [Browng2].

It is good software management to use the same boundary point detector to generate input for
all high level vision tasks that require boundary point detection rather than building a special
detector for each high level routine. If a boundary point detector returns a true/false decision for
each point then its output does not suit both regularization techniques and hough transform
techniques. Take for example Lhe one dimensional intensity slice shown in Figure 1.

Figure 1: Slice through an image with an ambiguous boundary

For use as a first stage before regularization it is preferable that such ambiguous slices be
considered boundaries because the cost of missing a boundary is high (compared to the cost of
missing an edge'.. For use with hough transform line detection figure L is not a good boundary
because the cost of an extra edge is high.

The traditional solution to the dilemma of satisfying differing requirements among
intermediate level routines has been to supply numbers such as edge strengths rather than
true/false decisions. These strengths describe how likely the low-level vision algorithm considers
the event such as the existence of a boundary. The example in figure 1 has the detector return a
low edge strength. Figure 2 shows a 0 edge strength.

Figure 2: Slice through an image with an edge strength of 0

Figure 3 shows a high edge strength.
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intensity

Figure 3: Slice through an image with a high edge strength

If an edge detector that returns strengths (acting as a boundary point detector) is used as

input for various intermediate level applications, then each application usually uses a threshold to

determine what is and isn't a boundary. If an edge strength is higher than the threshold a
boundary is reported. The threshold is determined by running the boundary point detector and the
intermediate level algorithm with different thresholds and finding the threshold that results in the

best results according to some error norm or human observation . If the boundary point detector is
changed new thresholds need to be found.

If boundary point detectors were standardized so that the correspondence between strength
and the probability of the boundary were consistent between all boundary point detectors then the
threshold need only be calculated once for each intermediate level application. Then the thresholds
for intermediate level applications could be calculated from theoretical principles. When the
strengths have clear semantics the entire process of threshold determination would be fully
understood.

A consistent and well defined output for boundary point detectors is the probability of a
boundary. If all boundary point detectors output the probability of a boundary then the boundary
point detector could be improved without changing the rest of the system. If the error sensitivities
of the intermediate level routines are known the thresholds can be determined by a simple
application of decision theory.

4. Likelihoods

Most models for boundary point detection describe how configurations of objects in the real
world generate observed data. Such models do not explicitly state how to derive the configuration

of the real world from the sensor data. This behavior of models results in graphics problems being
considerably easier than vision problems. Thus we have programs that can generate realistic
images that no program can analyze.

Given the assumption "There is a boundary between pixels Pi and P2" we can determine a
probability distribution over possible observed images. Let b(1,2) be the statement that there is a

boundary between pixels P, and p2. Let S(b(1,2)) be the set of region maps such that b(l,2) is true
(and generally I use the notation that S(statement) is the set of region maps where statement is
true). Let Af be the model for the boundary detection task. Then the probability of 0 (the observed
image) given b(1,2) under M is calculated by equation 1.

'Edge relazation algonthms often adjust the edge strengths. For the purpoess of this paper cousider such an algorithm
as a part of the detector, the output of this detector is the stengths output by the relaxation algonthm.
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If 0 is the observed data then the probability calculated in equation 1, PiO!b(1,2)&Mi, is
called here (inspired by the statistical literature) the likelihood of b(1,2) given observed data 0
under M. Generally the models we use in computer vision make the calculation of likelihoods
simple for the features we want to extract. However the desired output of a feature detector is the
conditional probability of the feature. Thus in boundary point detection I can derive
P(OIb(1,2)&M) and I can derive P(OI-b(1,2)&M) (-x means "not x" in this paper) but I want to
derive P(b(1,2)10&M).

A theorem of probability theory, Bayes' law, shows how to derive conditional probabilities for
features from likelihoods and prior p.-W-babilities. Bayes' law is shown in equation 2.

P(/O&M)= P(Ojf&M)P(flM)
P(O If&M)P lMJ+P(OI -f&M)P(-tM) (2)

In equation 2 f is the feature for which we have likelihoods. M is the model we are using.
P(OIf&M) is the likelihood of f under M and P(ftIM is the probability under M of f (the prior
probability).

For features that can take on several mutually exclusive labels such as surface orientation a
more complex form of Bayes' law shown in equation 3 yields conditional probabilities from
likelihoods and priors.

P(lIO&M)= P(OO&M)P(lIM)
M _ P(OIl'&M)P(t'IM) (3)

I is a label for feature f and L(f is the set of all possible labels for feature f.
Likelihoods are important because they are a useful intermediate term on the way to deriving

a posterior probability. An upcoming technical report describes formulas for evidence combination
based on likelihoods [Sher87]. To apply that theory of evidence combination one needs to compute
the likelihoods explicitly. Thus in the succeeding sections I calculate the likelihoods even up to
factors that are equal in all the likelihoods (hence are divided out by equation 3).

Another important use for explicit likelihoods is for use in Markov random fields. Markov
random fields describe complex priors that can capture important information. Markov random
fields were applied to vision problems in (Geman84]. Likelihoods can be used with a Markov
random field algorithm to derive estimates of boundary positions [Marroquin85] [Chou87].

5. Simplifications
To make the problem of computing the likelihoods for events computationally tractable, I

simplify my problem in certain ways.

The first simplification is calculating the probability of a boundary at a point rather than
trying to compute a probability distribution over boundary maps for the entire scene. Even though
a distribution over complete maps would be more general there are too many possible boundary
maps to manage realistically. Under certain circumstances all that is needed is to compute the
probability of a boundary near each pixel [Marroquin85.
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5.1. Window Based Boundary Detectors

Equation 1 implies an algorithm for determining likelihoods of boundaries. It shows that
i:erating through all the configurations that cause a boundary at a point is a way to find the
likelihood of a boundary. A regwn map is a description of where the images of the objects are.
Each configuration of objects in a scene implies a region map. However, the set of region maps
that contain a boundary between two pixels is too large to iterate through (for a 512 by 512
observed image it is >>102s'°00). The cardinality of the set of region maps is in general
exponential in the size of the image.

An obvious solution to the problem is to reduce the number of pixels. Generally, the further
one gets from a boundary the less relevant the data in the image is to that boundary. Thus it is
common to use a relatively small window about the proposed boundary for finding the boundary
(see figure 4). There are many fewer region maps over a 4 by 4 window than over a 512 by 512
image.

window

image

Figure 4: Small Window on Large Image

Thus by looking only at a window I simplify the problem of boundary point detection
considerably Inevitably, 1 lose some accuracy in the computation of probabilities from limiting the
data to a window. However the simplification of the algorithm compensates for this loss. Every
attempt at edge detection has used this principle [Hueckel7l] [Canny83] with possibly a further
stage of linking or relaxation.

5.2. Constraining Region Maps

Applying a ooundary point detector to an H (height) by D (depth) observed image involves
computing the probability of -ID boundaries. If H=D = 512, then HD =262144. A boundary point
detection algorithm computes probabilities for all these potential boundaries. The cost of using
algorithm that computes the probability of a boundary at a point is multiplied by RD. The cost
may be reduced by sharing some of the work between iterations. Still much of the work can not be
shared. Saving time by sharing work between iterations is discussed in later sections.

Ignoring saving by sharing between iterations, any saving in the algorithm that computes the
probability of a boundary at one point is multiplied manyfold (for H=D=512 262144fold.
Algorithms for computing the probability of a boundary at a point require work proportional to the
number of region maps. Reducing the number of region maps that need to be considered
proportionately reduces the work required by the algorithms for boundary point detection
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The maximal amount a region map can change the likelihood of a feature label is the
probability of that region map divided by the prior probability of a feature label corresponding to
that region map (shown by a cursory examination of equation 1, repeated below, with i being a
region map).

. P(Oi&MP(i[M)
p(O1b(1'2)&M) =  MNs1~.2))(1

P(b(1,2)JM.)

Bayes' law (equation 3) can be broken into two steps. First the likelihoods are multiplied by the
priors. Consider the likelihood of a feature label (say boundary, multiplied by the prior
probability. Call such a term the conjunctive probability of I since it is P(O&f=l&M). The
conjunctive probability of I can be changed by deleting a region map with f=' at most the
probability of that region map. The probability P(f-110&M) is derived from the conjunctive
pbabilities by dividing P(f=l&0&M) by the sum of the conjunctive probabilities
IP(f -r&O&M). Thus if the probability of a region map is small compared to

P(O&M) = ,P(f=r&0&M) deleting the likelihood corresponding to it has a small effect on the
P

resulting distribution. Thus one can with some safety ignore region maps whose prior probability
is small enough.

For standard edge detection algorithms a common restriction on region maps is to assume
that there are at most two object images participating in the window thus there can only be two
regions [Hueckel7l]. Step edge based models implicitly make this assumption [Canny831
[Nalwa84]. Windows with more than two object images in them are assumed to occur infrequently
I call the assumption that there are at most two object images participating in a window the two
object assumption.

Another simplification places a limitation on the curvature of the boundaries observed in the
image. Limiting this parameter limits the set of region maps in a mathematically convenient way.
If the curvature is limited enough the boundaries can be considered to be straight lines within
windows. Thus the windows on the observed image can be modeled assuming there is no boundary
or a single linear boundary across them. A similar model (it allowed two linear boundaries in a
window) was used in [Hueckel7l). I call the assumption that there are no high curvature
boundaries the low curvature assumption.

5.3. Numerical Approximations

Another effect that makes the probabilities calculated by my algorithms inaccurate is that a
real number can only be specified to a limited accuracy on the computer. Thus there is a limit to
the accuracy that calculations can be performed to in the computer. In section 6 I ignore the error
introduced from inexact floating point computations. In my implementation (section 8) I used
double precision arithmetic throughout in an attempt to reduce this error.

Another source of errors is my simplifying the mathematics to make the algorithm simpler.
One such approximation I make is to use the density of a normal distribution. as a probability. In
the equations derived in section 6 I use this approximation in the probability derived from a
multinormal Gaussian. This approximation simplified the mathematics for deriving the detector.
Such an approximation is standard
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6. Building a Boundary Detector
In section 4 1 discuss why determining likelihoods is a useful first step in feature detection.

In section 5 1 describe the approximations and simplifications necessary to make the problem of
boundary point detection computationally tractable. Now all that is left is to develop the
algorithm. The first step in deriving a boundary point detection algorithm is to derive the
likelihood that a window is filled with a single object given the observed data (section 6.1). Then
likelihoods for windows with multiple objects are derived (section 6.3). In this section I assume
that the model has Gaussian mean 0 noise with a known standard deviation added to an ideal
image.

6.1. Likelihoods for a Single Object
The problem is to find the likelihood of a single object filling a window in the image. The

expected intensities of the pixels in the window are proportional to the reflectance of 0. Let To be
the expected value of the pixels in the window when 0 has relectance 1, rlOi=1. TO is often
referred to as a cemplate in the image understanding literature.

Template matching can be best shown on a two dimensional medium (with weak graphical
capacities, when the window is I dimensional. Thus I use a I by 8 window for examples. A typical
template for a single object n a 1 by 8 window is shown in figure 5.

100 100 100 100 100 1o00 10 100
Figure 5: Template for a single object

This template is boring because I assume that there is little variance in intensity in the image of
the interior of an object. The observed image of the object has a normal iid added to each pixel.
Thus the observed image (when the standard deviation is 8) can look like figure 6.

[94 1104 100 194 92 1105 1 101 1 I037

Figure 6: Noised Template for a single object
The probability that the noised window results from the template is a function of the vector
difference between the window and the template. For the example in figure 6 given the template
for a single object in figure 5, the probability is calculated by summing the squared differences
between the template and the observed data (187) and then applying the normal distribution
function (for 8 independent normally distributed samples mean 0 standard deviation 8 rounded to
the nearest integer) to get 8.873e-12.

In later sections when I use windows or templates in equations the windows or templates are
flattened into vectors. Thus a two dimensional window is transformed into a vector (figure 7).

1 21 3
4 5 6
7 8 9

Window 1

12[ 3 14 15 16 7 89
The Vector from Window 1.

Figure 7: Flattening a window into a vector
All the windows and templates are assumed to be flattened thus. When a template is subtracted
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from a window, vector subtraction is happening. When a template or window is being multiplied
by a matrix, vector matrix multiplication is happening. In particular, WWT is the sum of the
squares of the elements of W while W7T

r is the sum of the products of the corresponding elements

of W and T.

Let aTo be a times the intensities in the template To. The template for an object with

reflectance r(O) is r(OTo. The probability of observing a window W when the scene is of 0 is
determined by the Gaussian additive factor. Equation 4 is the formula for the probability. (Let V
be the variance of the noise, a2 in the rest of this paper) Let n be the size of the window and K be
the constant 1/(2ffV) "n/.

P(Wr(O)=r&M) =cexp( -(W - rT o)(W -rT o)r/2V) (4)

Since the reflectance of the object in the scene is not known but the distribution of
reflectances is known one must integrate this formula over possible reflectances. Thus the
probability of a window given it is of a single object of known position and shape is in equation 5.

P(WIO&M) = fxexp(-(W-rT o)(W-rTo)T /2V)dD,(r) (5)

The term (W-rTo)(W-rTo)T can be rearranged to WWT-2rToWT+r 2 TOT. WWT is the
sum of the squares of the pixels in the window. Let us refer to it as W2 for shorthand. ToWr is
the correlation between To and W. Let us refer to it as C for shorthand. ToTJ is the sum of the

squares of the elements of the template. Let us refer to it as T2 . Using a rearrangement and these
shorthands equation 5 can be restated as equation 6.

P(W O&MV) = exp( - W2 /2V) fexp((2rC - r 2T 2)/2V)dD,(r) (6)

Equation 6 is the product of two parts, equation 7 :

F,(W2) = exp(-W"/2V)x (7)

and equation 8 :

F2(C) = fexp (2,C-r 2 T2)/2V)dD,(r) (8)

F, and F 2 have one parameter that depends on the window (T 2 i', unchanged over all windows).

They can be implemented by table lookup without excessive use of memory or much computation.

Hence the algorithm to calculate the likelihood of a window given it is of a single object of
known position and shape (but unknown reflectance) is described by figure 8 below.

Figure 8: Algorithm to Calculate Likelihood of Known Object for a Single Window

Multiplies Adds
W 2  WWT w w-1
C WTr w w-1

Output F, (W2)"F 2(C) 1 0

w is the number of pixels in W and also the number of pixels To. Figure 8 is a 4w - 1 operations
algorithm.

6.2. Reducing the Configurations Considered

In section 4 I describe how to derive the likelihood of a boundary at a point from the
likelihoods of configurations of a the scene given a boundary at a point (equation 1). Here I justify
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using a small number of configurations of the scene. Having reduced the set of configurations I can
derive an efficient algorithm for generating likelihoods given multiple objects. In section 5.1 I
made the assumption that only a small window on the image need be looked at. In section 5.2 I
justified ignoring region maps with low probability.

There is some number of objects, No, such that the probability No or more objects having an
image in a single window has a probability much smaller than the probability "f all but a small
probability subset of the region maps. Hence I need only consider configurations of No -1 or less
objects in a window. The two object assumption of section 5.2 is equivalent to saying N o = 3.

There are still a large set of configurations of less than No objects. Consider the ideal image
given such a configuration and some coloring of objects. Consider a window on this ideal image,
W,. There is a set of configurations with the same coloring such that the resulting window on the
ideal window from such a configuration Wj such that:

(WI - WJ)(WJ - WJ) 7 < e (9).

The likelihood that the observed image results from any of the configurations that fit the criterion
of equation 9 and coloring is close to the likelihood computed from W, because if W is the observed
window the likelihood is a function of the norm of W-Wj. Thus for efficiency sake we can
consider the likelihood of each configuration and coloring that fit equation 9 the same as that of
the configuration and coloring of the template that generates W1. Hence we can only consider a
small set of configurations of objects. With a similar argument one can prove that only a subset of
the possible colorings need be considered. Hence I can justify using an argument of this sort using
a small set of templates and objects. How much inaccuracy results from these simplifications can
be analyzed mathematically.

A step edge model can be derived by assuming that objects' images have a uniform intensity
and the two object assumption. Thus such simplifications underlies work like that of Hueckel73]
[Canny83]. More sophisticated assumptions about the intensities of objects images result in more
complex models [Binford81] that still can be reduced to a reasonable number of configurations
reflectances with a corresponding loss of accuracy in the resulting probabilities.

6.3. Algorithm for Likelihoods of Multiple Objects

Here I derive an algorithm for finding the likelihood that a scene that contains several objects
given a window.

The statement that the configuration of objects is near the specified configuration is called C.
C has No objects O with refiectances r,. Associated with C are No templates T,. Each T, is the
light that hits the image given that 0, has reflectance I and unit lighting.

The template that represents the expected window when the O, have reffectances r, is
X rATR. Hence the likelihood of the window when the objects have reflectances r, is shown in

equation 10.

P(WIC&r(O ,)=rl... rO,.)=r,&M) = ,cexp(-(W- 1rT,)(W- TPrJT)r/2V) (10)
A At

To derive the likelihood of the window when the objects are of unknown reflectance it is
necessary to integrate over all possible sets of r,. Equation 11 shows the integrated equation.
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P(WIC&M

= (11)

icfexp-W- XrT,,)(W- rT,,)T/2V)dD,r,,
A F9

I use the simplifying notation from section 6.1. Also let Cn be WT7. Then equation 11 can be

transformed into equation 12.

P(WIC&M)

(12)

uexp( - W 2 +wa 2 /2V)fexp( yrCt/V)exp(-( Ir T)( rnT) r /2V)dDrn

As in section 6.1 I can break up equation 12 into a pair of functions F, and F4. F1 is as
before F4 is described by equation 13.

F4 (C,C 2,...' CN0) = fexp( Yr.C./V)exp( - ( rnTa)(XrnT)T2V)dDern (13)
AA Ae

Unlike F2, F4 is a function of several variables. Thus using a table for table lookup on F 4

takes a large amount of memory since an entry Must be made available for each possible value of

the elements. Experiments with constructing F 4 tables for 2 object configurations show that F 4 is

smooth and near quadratic. As an example F 4 for standard deviation 12 noise and 5 by 5

templates is plotted in figure 9.

Figure 9: log(F) with stdev 12 noise and 5x5 template

Hence the tables can be stored sparsely and splines or even linear interpolation used to get at

values that were not given without introducing serious inaccuracy. If the table is close enough to a

quadratic function then perhaps only a polynomial need be stored.
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If all the T, are orthogonal (their pairwise vector products are 0) and D, is a probability
distribution where colors of objects are uncorrelated then F 4 can be partitioned into a product of
No functions. Each of these functions computes the probability that the relevant part of the
window observed data is the image of 0, for some n. Here No large precise tables can be stored to
compute each of the functions and their product used for F4 .

Since F 4 can be calculated there is a feasible algorithm for determining the likelihood of an
observed image given a particular pair of objects. A description of that algorithm and the times
spent in each step is shown in figure 10.

Figure 10: Algorithm to Calculate Likelihood of Multiple Objects for a Single Window

Multiplies Adds
WW7  w w-1

No times C, WTf NOw Now-NO
Output F 1(W2)*F4 (C1,C2) 1 0

I did not consider the cost of the interpolation or splining for F 4 in the operation counts in figure
10. The cost of this algorithm is (No+l)w+l multiplies and (N 0 +1)(w-1) adds plus the cost
incurred by the interpolation. This cost occurs for each window.

6.4. Blurred Images

The previous sections assume that the only degradation of the image data is a result of
adding a normal random variable to each element of the image (noise axiom). However lenses and
many other sensors degrade the image through blur. Motion also causes blur on film and other
sensors. Blur is often modeled as a linear transformation of the image data that is applied before
the normal variable is added to the pixels [Andrews77]. When blur is shift independent (same blur
everywhere in the image) then the linear operator must be a convolution operator.

The algorithms specified in sections 6.1 and 6.3 require changes to work under this new
assumption. If the blur is linear the change required to these algorithms is to use blurred
templates. The likelihood of the observed data given a template is a function of the vector
difference between the expected observation without the normal additive iid and the observed data.
If it is expected that a blurring has happened then one need to use a blurred template instead of
the unblurred template used in the previous algorithms.

The algorithm of section 6.3 uses two templates (one for each object). If the blur is linear
then the linear function aT1 + bT 2 and the blur function commute. Thus the two templates can be
blurred and the result of correlating the window with the two blurred templates can be used with
this algorithm.

The problem I address in the rest of this section is how to compute a blurred template from
an unblurred template. A shift independent blurring operation is applying a convolution operator
to the image. A convolution operator has limited extent if the illuminance of at a pixel in the
blurred image depends on a window in the unblurred image. Such a convolution operator can be
described by a matrix the size of the window that describes the effect each point in the window has
on that point of the blurred image. So a blurring function that causes each point of the blurred
image to be the result of .5 from the corresponding point of the unblurred image and .25 from the
points immediately to the right and the left has a matrix described by figure 11.
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1.25 .5 .2

Figure 11: Simple Blurring Function Matrix

Given a blurring function matrix of size (M,,,M1 ) and an unblurred template of size (T,,T), a
blurred template of size (T,-M,+I,T-Mi+i) can be calculated (figure 12) (8 means
convolution).

T:

100 1 100 1 100 200 1 200 1200

M:
.-257 .5 1 .25

T8M:

1100 1 125 [ 175 1 2007

Figure 12: Effect of Blur Matrix M on Template T

To develop a larger blurred template than (T.-M,+1,Tt-M+1) requires that the blur
function be applied to points outside the unblurred template. If the expected values for such points
are derived then a larger unblurred template has been constructed. Hence the derivation of a
smaller blurred template from an unblurred template suffices for the construction of blurred
templates.

6.5. Correlated Noise
The previous sections assume that an uncorrelated normal variable called noise that is added

into the illuminance of each pixel in the ideal image to get the observed image. It is possible to
relax the assumption that the noise added to each pixel is uncorrelated with the noise added to the
other pixels. Instead a matrix C can be supplied that describes the correlation between the noise
variables of the window.

One problem is how to handle correlations between points in the window and points outside
the window. Since one can only correlate with expected values of points outside the window (since
we chose to ignore the data from such points in our calculations) the effect of such points can only
introduce a constant factor into the likelihood calculations. When the likelihoods are converted
into probabilities this constant factor is divided out. Hence I can safely ignore such a constant
factor. For the purposes of evidence theory I may need to derive the constant factor but it need
only be derived once and then all the likelihoods be only multiplied by it.

The algorithm in section 6.3 has the algorithm in sections 6.1 as a special case. Thus if I
derive the algorithm corresponding to the one in section 6.3 I can derive the other algorithm. If I
have window W and I expect (possibly blurred) templates T, with unknown reflectances then the
equation that describes the likelihood of W is equation 14.

7B-B-13



P(W1O0• 0,&MW)

(14)
ecfexp( -(W - rT,,)C(W - Jr,Tn,)T/2)dDtr,

Pt n

I introduce notation to simplify equation 14 to the point where an algorithm naturally derives

from it. Let W' be WCW T . C is symmetric so let c =WCT.=T1 CWT. Then equation 14 can be
rearranged and simplified to equation 15.

P(W10 I ••O&M)

(15)

Kexp(- W /2)fexp( 5rc,)exp'- ( Yr T,.)C( Yr,, T)T/2)dDr,
A a n

I can then describe equation 15 as the product of two functions. F 5 that takes W' as argument

and F6 that takes the set of c,, as arguments. Equations 16 describe F5 and Fg.

Fs(X) = iexp(-X/2)

Fs(XI, " Xo) fexp( wr5 X)exp(-( Xr4 T.)C( XrT,)T/2)dD r  (16)
is A aI

P(WIO 1, O.o0 &M) = F5 (WZ)F 6 (c1, - cNo )

Equation 16 is simple enough to derive an algorithm that calculates the likelihood of a

window given a template and correlated noise with standard deviation a and correlation matrix C.
Figure 13 shows this algorithm.

Figure 13: Algorithm to Calculate Likelihood of Multiple Objects with Correlated Noise

Multiplies Adds
W :=WCW r  w(w+1) (w+1)(W- 1)

No times c 2  := WCT Now No(w-I)
Output F5(W )*F (c,c 2) 1 0

Like F 4 , Fg may require interpolation. The cost of the potential interpolation was not figured into

these calculations. The algorithm with correlation between the noise variables requires

w(w+l)+Nou'+l multiplies and (w+l)(w-l)+No(w-1) adds. Substantial savings may be

found when C is sparse. Correlation matrices are typically band matrices. If there are b bands in

C then the number of multiplies is less than (b+l)w+Now+l and the number of adds is less

than (b+ 1)(w-1)+No(w-1) adds.

6.6. Sharing the Work
The algorithms in figures 8. 10 and 13 are algorithms for finding the likelihood of a particular

template for a single window. Many of an observed image's windows overlap. If likelihoods are

being computed for two overlapping windows much of the work in computing the likelihoods can be
shared between the computations oA, the two windows. If the likelihoods are being computed for

every window on the image such savings can be substantial.

When taking the sum of the elements of two overlapping windows, as is one in the algorithm

of figures 8 it is necessary to only sum the overlap once. Figure 14 gives an example of this
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savings.

20 10 15 19

13 18 13 16

9 18 11 4

W, W2

(WIfW 2) = 10+15+18+13+18+11 = 85

I(W) = 20+13+9+x(WAW 2) = 127
I(W 2) = Y1(WlnW 2)+19+16+4 = 124

Figure 14: Summing the elements of two overlapping windows

The work in summing the squares of the elements in two windows can be shared this way too. If
the likelihood generator is being used on every window on an image then the work needed to
calculate sums and sum of squares is a fraction of that needed to calculate the same statistics for
the same number of non-overlapping windows.

If every window (or a substantial fraction thereof) of an image has the algorithms in figure 8
or 10 run on them then the work involved in convolving the image with templates can be saved too
(at least when the templates grow large). Convolution can be performed with the fast Fourier
transform at substantial saving in operations for large templates. For algorithm 13 when the
correlation matrix has structure (such as being a band matrix) then the fast Fourier transform can
be used with substantial savings too.

Thus much of the work can be shared when likelihoods are being determined for every
window of an image. Hence the likelihood generators described in figures 8, 10, and 13 are

competitive in speed with most standard edge detections schemes.

Another way the work can be shared is that some of the templates used that describe object
configurations in a window is by describing the configuration in another template shifted 1 pixel
over (see figure 15).

TI T2

Figure 15: T, is T 2 shifted I pixel to the right

If every window in the image is being processed then the likelihoods corresponding to the template
T 2 are approximated by the likelihoods calculated by the template Tt for the window 1 pixel to the
right. To realize why such an approximation is good, consider that using a window is itself an
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approximation. The likelihood of the configuration of objects described by T, is approximated by
running the algorithm over a window The likelihood of the configuration described by T 2 can be
approximated by running the same algorithm over a window shifted 1 to the right.

Thus the likelihoods for the template corresponding to T 2 need only be calculated for the
windows on the far right hand side of the image (the other windows have the T, template run on
them already). Thus instead of having to take into account templates corresponding to the same
configuration of objects shifted several pixels in some direction one need only use a single template
and use the output from this template on windows shifted in that direction.

6.7. Getting Probabilities from Likelihoods
Given likelihood generators the remaining task is to calculate probabilities from these

likelihoods (using priors). The first task that needs to be done is to group the likelihoods generated
into sets that support different labelings for the features. Thus if the configurations C 1, C2 , C3
correspond to the existence of a boundary at a point and C4, C5 and Ce represent situations that
aren't boundaries at that point then I must collect the likelihoods based on C1, C2 and C3 into a
single likelihood and similar with the likelihoods collected from C4, Cs and Cs. Then I would have
a likelihood corresponding to each possible labelings of my feature (for boundary point detection I
need to determine the likelihoods corresponding to the existence of a boundary and those that
correspond to the nonexistence). Given these likelihoods I can use Bayes' rule to derive
probabilities (see equation 3).

The likelihood of a boundary is the probability of the observed scene being generated when an
obiect configuration corresponding to the existence of a boundary exists. I can derive an equation
for calculating the probability of a boundary from the output& of my likelihood generators if I have
the prior probability that the configuration is the position of the objects in the scene for each
configuration that corresponds to a boundary. Let the set of configurations that correspond to a
boundary be represented by Cb. Equation 17 is the first step in the derivation expanding out the
likelihood into conditional probabilities.

P(WQcb) =P(WOCb) (17)P(WolC != p(c 6.) 1

Since the real scene can not correspond to two different configurations I can expand equation 17
into equation 18.

Y P(Wo&cEC,)

P(WoICb)=, (18)
2; P(cE Cb)

A slight change to equation 18 introduces the likelihoods generated by the algorithms in figures 8
through 13 and the prior probabilities that the scene is in a configuration tested by the algorithms.
Equation 19 shows this change.

X P(WoIc Cb)P(cEC b)

P(WoCb)= P(CC ,19)

CECb
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Equation 19 allows me (given priors on the templates or template sets', to gather many

likelihoods into a single one. If I have likelihoods for every feature label and prior probabilities

that the feature takes on that label I can use Bayes' law as in equation 3 (reprised here) to derive

probabilities for feature labels given the data in the window.

P(Otlf&M)P(lfIM)
1 P(OII f & M )P ( -I f M )  (3)

6.8. Estimating Boundaries
in section 6.7 1 show how to derive probabilities given a likelihood generator. Often one must

use programs (e. g. programs supplied as part of a package) that take as input estimates of the

positions of the boundaries. Such programs can not use probabilities, they just want a boundary

map. Here I show how to generate such an input.

To estimate where the boundaries are in an image it is necessary first to develop a cost

function that describes what costs errors in estimation have. To use the probabilities of boundaries

at points to estimate the configuration of boundaries in an image optimally it is necessary to use a

cost function that sums the effects of pointwise errors. Such cost functions are simple to

understand and require few parameters to describe (namely only the costs of different mislabelings

at a point). I only use this type of cost function in this part of the paper. I also assume that

making a correct decision has 0 cost.

For boundary point detection the costs that need to be calculated are:

(1) the cost of labeling a point as a boundary when there is no boundary there.

(2) the cost of labeling a point as not being a boundary when it is.

Call the cost of labeling a point (xj) as a boundary point when it isn't cL(xy) and the cost of

labeling a point as not being a boundary when it is c2 (Xy). Let pB(xy) be the probability of a

boundary at (xy. Let ea(xy) be I when the estimation procedure indicates there is a boundary at

(xy) and 0 otherwise. We want a detector that minimizes the expected cost for the estimation.

Thus we want to minimize the summation in equation 20.

TC,(X,l(1-p a(X,))e s(XY) +C2(X,y)p a (XV)(1 - e (x,)) (20)
(z,.y)

Let us assume that cl(xy) is the same for all (xy) and the same for c2. Equation 20 is clearly

minimized by minimizing equation 21 for each (xy) ((xy) is deleted for clarity).

c,(l-pD)eB +cLp(1-eB) (21)

Equation 21 can be rearranged into equation 22.

(C1(1 -pB)- 2p)eB(xy)+c 2PB (22)

Clearly you want eB to be 1 when equation 23 is positive and eB to be 0 when equation 23 is

negative.

CI(1 -pB)-czPB (23)

This statement can be algebraically transformed into the statement that eB should be 1 when the

inequality in equation 24 is satisfied and 0 otherwise.
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P8 < Cl-c 2  (24)
Cl

Thus one only needs to threshold the probabilities of boundaries with -- to estimate the
Cl

positions of the boundary cr the additive cost function with costs cl and c 2 . This argument is

standard in Bayesian decision theory with simple loss functions [Berger80].

7. Implementation Details

Here, I describe my implementation of the algorithms described in section 6. 1 have code for
the algorithms in figures 8, and 10. 1 also have constructed the code that is implied by equations

19 and 3 of section 6.7.

7.1. Likelihood Generators

These algorithms are based on the assumption that the scene can be modeled by a set of

templates. The templates are objects of unit reflectance under unit lighting. I have one template
that represents the window being in the interior of the object shown in figure 16.

111 111

1 1 11 1
1 1 1 1

Figure 16: Template for the Interior of an Object

For each of 4 directions, 0 degrees, 45 degrees, 90 degrees, and 135 degrees, I have 3 pairs of
templates that describe three possible boundaries. For example figure 17 shows the 0 degree

templates.
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1 pair

1 11 0.5 0 0
1 1 0.5 0 0
1 1 0.5 0 0
i 1 0.5 0 0
1 1 0.5 0 O

0 0 0.5 1 i
0 0 0.5 1 I
0 0 0.5 1 1
0 0 0.5 1 1
0 0 0.5 1 [

2' pair

1 1 0 0 0
1 1 0 0 0
1 1 0 0 0
1 1 0 0 0
1 1 0 0 0

0 0 1 1 1 1
0 0 1 I
0 0 1 I1
0 0 1 1 1
0 0 -1 1

3 rd pair
t 1 1 o 0

1 1 1 0 0
1 0 0

1 1 0 0
1- I 1 0 0

0 0 0 1 1
0 0 0 1 1
0 0 0 1 1
0 0 0 1 1
0 0 0 1 1

Figure 17: Template for the 0 degree Boundary

Each pair of templates represent two objects, one occluding the other. I have not generated
any templates for windows with 3 objects.

The algorithms in figures 8, and 10 consist of a part that is dependent on a template used and
a part that is a function of the observed window. It is the part that depends on the template that
presents implementation difficulties. Function F2 is a function of the sum of squared elements in
the template. Function F4 is a function of the pairwise products of the templates representing the
objects in the configuration. Both of these functions were implemented by table lookup with linear
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interpolation in my implementation For every direction the sum of squares of the templates and
the pairwise products are described by the same 5 numbers. Only two F 4 tables need to be
generated.

F2 and F4 also depend on the standard deviation of the noise in the image. r call a likelihood
generator that assumes a specified standard deviation of noise a likelihood generator tuned to that
standard deviation of noise. I have likelihood generators tuned to noise with a equal to 4, 8, 12,
and 16.

7.2. Probabilities from Likelihoods
I use equation 19 to gather together the three likelihoods generated from the 3 pairs of

templates in each direction into a single likelihood. Thus I have the likelihoods for the four
directions that a boundary passes through or next to the center pixel.

I also need the likelihood that there is no boundary near or through the center pixel. To get
this likelihood I take the likelihood that the window is in the interior of the object and combine it
with likelihoods for central boundaries calculated for the neighboring windows. Thus from the 0
degree boundary likelihoods I use the likelihood from the window one pixel left and right and
combine it with the likelihood of a noncentral edge.

Thus I have 4 likelihoods for 4 directed boundary points and one likelihood that represents
the likelihood that there is no central edge in the image. I then use Bayes' law from equation 3 to
compute the probabilities of these 4 states. I then threshold the probabilities at 0.5 to present the
results shown in section 8. Throughout I assumed that the prior probability of a central edge is 0.1
and that this probability is equally distributed in all 4 directions. This prior information is
sufficient to apply Bayes' law

8. Results from Implemented Boundary Detectors
I have implemented the algorithms in sections 6.1 and 6.3 figures 8 and 10. Here I describe

the results from testing this detector.

The software I have written is flexible. However I have only constructed templates for a
restricted set of configurations. I have templates for a step edge model with the low curvature
assumption, 4 possible orientations for boundaries, and 255 gray levels in the image. My
templates handle boundaries that occur in the center of pixels or between pixels. I have built the
templates for a 5x5, 7z7 and 9x9 windows. I also have constructed tables to compute F, and F 4 for
each of these windows that assume noise of standard deviations 4,8,12, and 16.

8.1. Results with Artificial Images
I have applied these operators to test images constructed by a package of graphics routines.

This package was written by Myra Van Inwegen and is described in an upcoming technical report.

I describe my operators applied to two test images generated by this package One is an
image of two circles shown on the left in figure 18a
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Figure 18: Artificial Images
A more challenging and complex image has also been tested shown in figure 18b.

The two circle image (figure 18a) is a particularly good image to test the effect of boundary
orientation, curvature and contrast on boundary detection. Figure 19 shows the result of using a
5x5 operator tuned to standard -deviation 12 noise on image 18a with standard deviation 12 noise
added to it. The images are white at points of greater than 50% probability and black at points
less than 50% probability.
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a: image with stdv 12 noise b: white if then is no edge
cwhite if 0degeeedge d. white if 90degreeedge
o: white if45 degree edge f White if 135 degree edge

F~gure 19: Oriented response for 5x5 operator

In figures 20, 21, and 22 1 apply the standard deviation 12 operator to the image 18b with too
little, just right and too much noise respectively. The operator output is black when there is
greater than 50% probability of a boundary. Note that with too little noise the detector misses
bounda-ries that are there. With too much noise the detector detects boundaries that are not there.
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e: image with co=8 noise d. o=12 operator on image with a = noise

Figur 20: a=12 Wz operator applied to images with too little (a< 12) noise
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a: image with cr 12 noise b: a=12 operator on image with a=12 noise
Figure 2 1: a= 12 5x5 operator applied to image with correct (a= 12) amount of noise
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One tricky point is that multiple reports of boundaries are usually considered a bad result
[Canny83]. However systems that report a boundary only once will usually have a high false
negative rate because they report an edge one pixel off from where it really is. I consider this error
to have low enough cost to be ignored. So my software ignores false negatives that are next to
reported boundaries in a direction normal to the boundary.

Figure 23 charts the performance of my operator tuned to c'=12 on the images shown
previously. Figure 24 charts the performance of my operator tuned to a=4 noise. Figure 25 charts
the performance of an operator that is tuned to the same noise level as is contained in the image.
Figure 26 superimposes the three graphs of total error rates to show the relationship.
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(a) false positive rate vs increasing a of noise in image
(b) false negative rate vs increasing a of noise in image

(c) total error rate vs increasing a of noise in image
Figure 23: Error Rates for the Operator Tuned to a= 12 noise
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(a) false positive rate vs increasing a of noise in image
(b) false negative rate vs increasing a of noise in image

(c) total error rate vs increasing a of noise in image
Figure 24: Error Rates for the Operator Tuned to a=4 noise
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(a) false positive rate vs increasing a of noise in image
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(c) total error rate vs increasing a of noise in image
Figure 25: Error Rates for the Operator Tuned to a of the noise in the Image
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Figure 26: Total error rate for my operators

As you can see the tuned operator is always at least as good as the operator that has been
developed for stdev 12 or 4 noise.

8.2. Results with Real Images
I have also applied my operator to real images. Here, I use two images, a laboratory image of

a Tinkertoy model (figure 27) and an aerial picture (figure 28). 1 demonstrate the utility of having
operators that return probabilities with these results. In both these figures (a) is the image, (b) is
the output of my 5x5 stdev 12 operator thresholded at 10% probability, (c) is thresholded at 90c
probability and (d) is thresholded at 50% probability. (b) would be used when the cost of missing
an edge is high as when the output would be fed to a regularization technique. Note that for case
(b) the operator sometimes returns thickened edges. (c) would be used when the cost of missing an
edge is low. Hough transform techniques are often developed with that assumption in mind.
There is enough information in figure 27c to find the rods of the tinker toy even though all the
boundaries are not extant. (d) is what you use when an operator is equally troubled by all errors.
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(a) Tinkertoy Image
(b) Output of a'=12 Operator with threshold at .1
(c) Output of a = 12 Operator with threshold at .9
(d) Output oi a = 12 Operator with threshold at .5

Figure 27: a'=12 5x5 operator applied to tinker toy image
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(a) Aerial Image

(b) Output of a= 12 Operator with threshold at .1
(d) Output of a= 12 Operator with threshold at .9(d) Output of o= 12 Operator with threshold at .5

Figure 28: =12 5x5 operator applied to aerial image
A particular threshold may result in a most pleasing (to a human observer) ensemble of

results (perhaps .5). But this threshold may not be the best threshold for the succeeding
application.

One may notice that lowering the threshold seems to increase the number of boundary points
in the regions of real boundaries. It is not surprising that the regions that look most like
boundaries should be near boundaries. Also the probabilities of boundaries are being reported as
lower than they should be in this image. A good reason for this is that the model used to construct
the operator shown is not a good model for this image. In particular there is some evidence
[Sher87I that the standard deviation of the noise is closer to 4 than 12 in these images. Thus look
at the same results for the a=4 operator in figures 29 and 30.
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Figure 27:a--4 5z5 operator applied to tinker toy image
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such as Canny's and Flaralick's will be tested against my operators in the next month or two.

In figure 31 the results of applying the Sobel, Kirsch and thinned Kirsch to my artificial
image with stde'v 12 noise.

(a Img itI'12nie

(b) Output of the Sobel Optimally Thresholded

(c, Output of the 5x5 Kirsch Optimally Thresholded
(d, Output of the Thinned Kirsch Optimally Thresholded

Figure 31: Application of Established Operators to an Artificial Image
I have mesrdthe error rates for these operators and have charted the total error rates in figure
32.
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(a) Error rates for the thresholded Sobel
(b) Error rates for the thresholded Kirsch

(c) Error rates for the thinned Kirsch
Figure 32: Charts of Total Error Rates for Established Operators

To summarize the results I have a plot that shows the error rates for all the operators I have tested
so far (figure 33). In this chart my stdev 12 operator is shown as squares, my tuned operator is
showu as circles, the Sobel is shown as triangles, the thresholded Kirsch is shown as crosses and
the thinned Kirsch is shown as X's.
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Figure 33: Error Rates for all Operators

For comparison, I have run the 3 established edge detector on the two real images shown in
section 8.2. Figures 34 and 35 show the result of runing these operators with my established
operators. Clearly, in these circumstances the most effective established operator for these images
is the thinned Kirsch.
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(a) Aerial Image

N'0 Output of the Sobel Optimally Thresholded
(c) Output of the 5x5 Kirsch Optimally Thresholded

(d) Output of the Thinned Kirsch Optimally Thresholded
Figure 35: Application of Established Operators to Aerial Image

One can criticize these comparisons by saying that the image statistics favor my operators,
which are robust with dim images. To counter this criticism I have also run the three operators
(Sobel, Kirsch and thinned Kirsch) with a preprocessing stage of histogram equalization. Thus all
the test images will be rescaled to have the same statistics. Thus when I find the optimal
threshold for the standard deviation 12 artificial image it should remain a good threshold for all
the tests.

The optimal thresholds happened to be 220 for the Sobel, 750 for the Kisch (coincidently),
and 125 for the thinned Kisch. The result of using these operators and thresholds on the standard
deviation 12 artificial image (figure 18b) is shown in figure 36.
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(a) Total Error rates for the thresholded Sobel on the Histogram Equalized Image
(b) Total Error rates for the thresholded Kirsch on the Histogram Equalized Image

(c) Total Error rates for the thinned Kirsch on the Histogram Equalized Image
Figure 37 Charts of Error Rates for Established Operators

In figure 38 1 compare the 3 operators on histogram equalized images to my operators on the
original images (my operators do not expect histogram equalization and doing so may confuse
them).
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Figure 38: Comparison with Established Operators Applied to Histogram Equalized Image

Since the artificial images already had the full range of graylevels histogram equalization did
not help the established operators much. However the advantage cf histogram equalization is
shown clearly when the operators are applied to real images in figures 39, and 40.
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Figure 40: Application of Established Operators to Aerial Image

9. Previous Work

Edge detection is the established vision task that bears most closely on the boundarydetection problem I describe here. Edge detection has been one of the earliest and most bmportant
tasks attempted by computer vision systems. Usually edge detection is described a ad problem in
image reconstruction.

Edge detction is often characterized as discovering the contrast in a region of the ideal image
when there is an boundary between two constant intensity regions of the ideal image. Since I am
not motivated by image reconstruction this task is not of particular interest for me. However often
edge detection algorithms are used for boundary point detection. The idea is to accept as
boundaries the pixels whose windows the detector considers to have high contrast.

The &rst work on edge detection was by Roberts who developed the Roberts edge operator to
detect boundaries and corners of blocks It was a simrle convolution operator probably inspired by
convolution based p-ttern matching. Since Roberts edge detection has been worked on by a large
number of vision workers. Some of the operators were worked out in a somewhat ad hoc manner



as the Roberts was. The "best" and most common example of such operators is the Sobel edge
operator

Many have worked on "optimal operators" where some model of edges is presented and the
"best" function that fits a specified functional form. The definition of "best" and the functional
form varies. Almost everyone who takes this approach limits the functional forms of edge
operators to convolutions.

Hueckel [Hueckel7l] considers convolutions over a disc on the image. He models edges as
step edges with linear boundaries occurring at random places in the disk. His functions are
limited to look at only certain specific Bessel coordinates (of an integral Fourier transform) that he

has determined are useful for edge detection. He takes into account somewhat the possibility of
two edges in the region In a later paper [Hueckel73J Hueckel considers edges that are two parallel
step edges a few pixels apart. He analyzes such edges the same way he analyzed the previous kind
of edges.

At MIT starting with Marr [MarrS2, there has been concentration on zero crossing based edge
detection. The edge detectors they use are to locate edges at zero crossings of a Laplacian of a
Gaussian. (Torre861 (Lunscher86b] [Lunscher86a] describe how such an edge detector is an

approximation to a spline based operator that has maximal output at edges (compared to
elsewhere). Such an operator also has been shown always to create connected boundaries.

Canny [Canny83] has examined the issue of convolution based edge detection more closely.
In particular he studied the goals of edge detection. He considered an edge detector to be good if it
reported strongly when there was an edge there and did not report when there wab no edge. He
also waned a detector that only reported once for an edge. He found that these constraints conflict
when one is limited to convolution based edge detectors (such behavior arises naturally for the

boundary point detectors in this paper). His primary work on this topic was with a 1 dimensional
step edge model. He derived a convolution operator that was similar to a 0 crossing operator. He

also discusses how to extend the operators defined for one dimensional images to two dimensional
images, and when oriented operators are desirable. His operators, applied to real images, usually
appear to do a good job of finding the boundaries. In this paper I derive boundary point detectors
for step edges but do not constrain the functional form of the edge detector. Thus the edge
detectors based on this should have performance at least as good as Canny's detector.

Nalwa [Nalwa84] used a more sophisticated model where he assumed that regions in the
intensity image fit (at least locally) surfaces that are planar, cubic or tanh type. He tested whether
a surface fit a window on the image and if not he tried to fit various boundaries between surfaces.
He ordered the tests to be of increasing computational complexity. His operators, applied to real
images, usually appear to do a good job of finding the boundaries. The work in this paper handles
models of this form and derives optimal operators.

Another approach to edge detection is to simulate parts of the human early visual system
Zero crossing operators were originally motivated by this argument since it was found that there
were cells in the human early visual system that compute zero crossings at various frequencies
[Marr82]. Other work that seriously studies the human early visual system was by Fleet [Fleet84]
on the spatio-temporal properties of center-surrounds operators in the early human visual system
My work is not concerned with the structure of the early human visual system since its goals are

to perform a task best as posstible rather than as human-like as possible. However I can draw
inspiration from the human visual system since it has been highly uptiLnized to its goals oy
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evolution and hence an optimal detection system may be similar to that of the human eye (or
animal eye for that matterL.

Haralick has taken a similar approach to mine for the problem of edge detection

L1aralick86a]. The differences between his approach and mine are that he models the image as a

surface rather than as a function of a scene, and his operators generate decisions about edges

rather than probabilities of edges [Haralick84]. However he has told me that his theory can be

used to generate likelihoods that can be used with the techniques presented here [Haralick86b,.

The relationship between his facet model and my template based models is currently under
investigation.

10. Conclusion

I have demonstrated an operator that fulfills the desiderata in section 1. It has flexible

output that can be used by many operators because it returns probabilities. It works on gray scale

input. Because the operator is based on windows it does work proportional to the size of the image
to calculate boundary probabilities. By constructing templates to represent a boundary shifted less

than a pixel one can have subpixel precision with work proportional to that precision. A

parameter of the algorithms I describe is the expected distribution of illuminances. Another is the

standard deviation of and correlation in the noise.

Results were reported from using a 5 by 5 operatoK developed from this theory in section 8. 1

have applied this detector to artificial and real images. In section 8.3 I have compared my

detectors to the established detectors, Sobel, Kirsch, and thinned Kirsch. In the next few weeks

results from using a 7 by 7 and 9 by 9 operator will be available. Also comparisons will be done

between these detectors and more advanced edge detectors such as Canny's [Canny833, and

Haralick's [Haralick84].

In a companion report I describe an evidence combination theory that is applied to operators
that return likelihoods that allows me to combine robustly the output of several different operators
on the same data [Sher87J. Soon there will be results from using the likelihoods as input to a

Markov random field based system [Chou87].
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Abstract

Experiments with correspondence algorithms using dynamic programming have
shown that robust and high quality correspondences can be computed, even between
images acquired from radically different viewpoints, on different days, under
different lighting conditions, and for scenes of discontinuous depth change. This
paper examines the underlying reasons that these algorithms obtain such results.

The spatial structure of a scene and image can be represented by ordering image
features by spatial position. Structure and its representation by order describe non-
local characteristics of a scene and image which remain invariant to changes in
viewpoint. Thus, order from structure provides an excellent mechanism for
detecting correspondence between different images of a scene. Once such an
ordering is established, dynamic programming provides one method for resolving
remaining ambiguities.

The notion of correspondence from structure is developed by comparison with
other underlying constraints discovered in prior work on correspondence. Some
observations about the theoretical and experimental performance of correspondence
algorithms based on order from structure are made.
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1. Introduction

A problem of central interest to many vision researchers is detecting the

correspondence between two or more different images of the same scene. The

correspondence problem arises, for example, in stereo and motion processing, as well

as during the verification phase in recognition by hypothesis-and-verificdtion.

Recent research has focussed on matching features extracted from the image which

are invariant with respect to changes in factors such as viewpoint, lighting, and

signal noise. Typically, edges are extracted and matched.

One principled way to frame the edge correspondence problem is as a

combinatorial optimization. In this view, computing the correspondence between

two images involves nxm pairwise comparisons of n edges from one image and m

edges from the other. The problem is to select the subset of pairings that yields the

best overall match. Unfortunately, there are nm! many such subsets to choose from.

Clearly, if we view the problem in this way, the challenge is to develop constraints

which will allow us to efficiently select the best overall match.

Scene and image structure provide a powerful constraint for computing edge

correspondence. Spatial structure can be represented as an ordering of features by

relative spatial position. Correspondence of features from two images can be

established by comparing similar orderings from each image. Furthermore, once

such an ordering has been established, dynamic programming can be applied to

resolve remaining ambiguity in the selection of the best overall match.

As experiments show, computing correspondence from spatial structure is very

effective, even for problems involving changes in viewpoint, lighting conditions, and

domain. This success derives from two main strengths not typical of other

correspondence algorithms. First, structure is highly non-local in nature. Second, in

most correspondence problems, relational structure is invariant.

As the discussion of correspondence by structure is developed, the importance of

these two traits will become clear. First though, the paper spends some time tracing

the discovery of the central difficulties in the correspondence problem, and the

constraints that were developed to address them. After providirg this perspective,

the paper describes structure and its representation by spatial ordering. The

advantages of structure for correspondence are described, and its use in a dynamic
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programming framework is outlined. Finally, some experiments are presented,

demonstrating the effectiveness of the approach.

2. Local Analysis and Constraints

Originally, the corresrondence problem was thought to be simply an issue of

image intensity correlation. Addressing local position variation (in stereo and

motion correspondence) required modifying this approach to matched filtering for

point or patch characteristics [Hannah 1974, Panton 1981]. Such intensity matching

approaches were soon found susceptible to failure, due to variation in the intensity

signal introduced by factors such as signal noise and changes in viewpoint. This
motivated the development of matching features extracted from the signal, the

hope being that such features represented real invariants in the scene. Typically,

edges are detected and matched.

The local patch matching heritage evolved into a local edge matching process. In

principle, each local edge from one image could match to any of the many edges in

the other image. The local characteristics of an edge (its direction and the polarity of

its intensity change) are available for discrimination. But the most important

constraints derive from an edge's position. Some positional constraints are derived

from imaging geometry, as opposed to scene geometry. Thus, epipolarity constrains

a local edges match to lie along a 2D line in the other image [Barnard and Fischler

19821. Other positional constraints are derived from assumptions about the world.

One can assume smoothness, or guess maximum depth ranges allowable, and

constrain the positional range in which a match might occur in that fashion.

Unfortunately, even after all these constraints have been applied, ambiguity fo

matching often remains. This is due to a basic deficiency of local analysis: it suffers

from the aperture problem, or "keyhole" effect. As if peering through a keyhole,

local match search is ignorant about the non-local structure of the scene which

could resolve apparent local ambiguity. Furthermore, local match analysis by
position often lacks a coherent procedural framework. Algorithms typically operate

by "looking around" in the same place in the other image for a match [Grimson

1981], and assuming no ambiguity will occur.
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3. Non-Local Analysis and Constraints

Some significant improvements have been developed however, most of which

address "keyhole" effect problems. The most successful strategy, now an accepted

tool in perceptual work of all kinds, is coarse-to-fine multi-resolution analysis [Marr

1982], or as recently generalized, scale-space analysis[Witkin 1986, Witkin et al

1987]. The strength of this notion results from the fact that it addresses the two

main problems of correspondence simultaneously - coarse scale analysis is not only

less local (and therefore less ambiguous), it is less sensitive to signal noise as well.
One important characteristic of scale-space analysis is that it arises from controlling

the imaging process, not from building knowledge of the scene.

Another constraint, sometimes called the constraint of "figural continuity" also

counteracts the "keyhole" effect [Mayhew and Frisby 1981, Ohta and Kanade 1985,

Cooper et al 1987, Grimson 1985]. The strength of this constraint is due to the non-
local and less ambiguous nature of a connected contour, which reflects invariant and

real structure in the world.

3.1 Dynamic Programming

Even more progress in addressing the correspondence problem was achieved with

the introduction of dynamic programming as a framework for match search [Baker

19891 The algorithm [Bellman 1957] is designed to efficiently compute a global

optimum (in this case the best overall edge match). With the addition of one

constraint, it is well suited for the edge correspondence problem as framed in the
introduction. The essence of a dynamic programming algorithm for matching is the

recurrence relation:

GS(ij) = LS(ij) + maxkI E RGS(k,l) [equation 1]

where

-GS(ij) is the global score if'i matchesj' is part of the best overall match
- LS(ij) is the local score computed by comparing features i andj

- maXk.I E RGS(k,l) is the maximum of global scores prior to ij in the region R.

In the standard formulation, R = {(i-1,j), (i-1,j-1), (i,j-1)}
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As originally designed, dynamic programming optimized decisions ocurring over

time (thus the "dynamic" modifier). Assumed was that the events being compared in
the LS predicate were ordered.

Baker[1982] observed that edges along corresponding epipolar lines maintain
such an order, left-to-right, allowing computation of line-to-line correspondence by
dynamic programming. Ohta and Kanade[1985] extended the framework so it could
handle connected contours (incorporating the "figural continuity" constraint). To
accomplish this, the dynamic programming recurrence relation had to select the best
path from a 3D cube instead of a 2D table. Also, a spatial sort of contours was
performed prior to the application of the dynamic programming equation, in order to
establish the required ordering. Both Baker's and Ohta and Kanade's algorithm ,

were reported very successful.

4. Structure and Order

The reason correspondence by dynamic programming works well is that the edge
ordering represents the underlying invariant non-local structure of the real scene.
As will be seen, this is true to such an extreme extent that once a good ordering has
been obtained from each image, the dynamic programming selection of best match is

almost irrelevant.

4.1 Structure

"Structure" is defined here to be a description of the relative spatial position of
entities. Such descriptions are stratified and hierarchical. Thus, scene structure is
the relative position of the objects in a scene. Object structure refers to the spatial
composition of an object with respect to its sub-components. And sub-components
can have structure as well.

Image structure is the image projection of scene and object structure. As Witkin
and Tenenbaum (1983] note, the most easily detectable image structure is non-
accidental regularities in the image which arise from the projection of primitive
component structure. More generally, if contours of connected edges arise from the
projection of invariant boundary structure in the scene, the relative spatial position

of contours in the image is the image structure corresponding to the scene and object
structure.
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4.2 Structure is Non-Local and Unambiguous

Obviously enough, structure is non-local. In the scene, the relative position of

objects and components to each other is highly non-local. Furthermore, with respect

to any one reference frame, these positional relationships are unique. In the image,

the position of one contour with repect to all others in the image is unique and non-

local also.

4.3 The Invarianee of Qualitative Structure

In many circumstances, the same structural relationships hold in two different

images of a scene. To begin with, if we consider only static scenes, we know that the

scene structure is unchanging. If the scene structure is invariant, over a wide range

of viewpoints the qualitative relationships constituting structure in an image remain

the same. For example, in a scene where a dog is "to the right of" a cat, over a wide

range of viewpoints the dog and cat have the same qualitative spatial relationship to

each other. (In fact, the dog and cat maintain the same relationship over nearly half

of all possible viewpoints. Only by viewing the cat and dog from the completely
inverse direction is the relationship inverted). When the components of an object

maintain this invariance over a range of viewpoints, this is sometimes represented

explicitly and referred to as the principal view [Feldman 1985] or generic or
characteristic view of the object [Chakravarty 1982].

Clearly, the exact quantitatve relationship between the dog and cat does vary in

images acquired from different viewpoints. ("liow much" the dog is to the right of the

cat in the image changes).

Of course. few invariants remain unchanging under all circumstances. The

utility of an invariant depends on the fraction of expected cases over which it holds,

criteria hard to quantify and evaluate. For correspondence, there is a small
viewpoint range over which invariants can be reasonably expected to hold (not

including, for example, both the front and back views of the dog and cat). Within this

range, there is only one major difficulty for the invariance of spatial image structure.

This arises when two objects are at greatly different distances from the imaging

device, and aligned in view. (If the nearer object is large, it occludes the more distant

object under these cicumstances). This situation is highly degenerate with respect to
viewpoint. Thus, a small change in viewpoint can result in a change in the relative
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relationship between the objects in the two images. It is important to note that even

under these circumstances, the invariance is only violated locally. The position of a

contour with respect to almost everything else in the image still remains the same.

(It is also interesting to note that this situation virtually never arises with single

connected objects; structural invariance remains inviolate for principal views).

If the structure of the scene is varying (ie. if the objects are in motion with respect

to each other) structural invariance in the images cannot be expected to hold, strictly

speaking. On the other hand, even in this situation, most of the scene remains

structurally invariant.

The invariance of image structure iepends as little as possible upon assumptions

about the world. Objects with boundaries continuous over scale larger than a pixel

must exist somewhere in the scene. More general assumptions of smoothness are not

required.

4.4 Spatial Order Represents Structure

One efficient representation of qualitative image structure is an ordering of

image features generated by sorting the features by spatial position. For example,

the relative positions of contours extracted from an image can be represented by

sorting them by spatial position. The image coordinate system implicitly provides

one convenient reference frame.

There is no obviously natural way to order connected contours in a 2D image.

However, any ordering will suffice, provided it preserves invariance [Yuille and

Poggio 1984]. Ohta and Kanade [1985] developed the first such sort for connected

contours, basing it on the 1D invariance of left-to-right precedence along scan lines

in the image. Figure 1 shows the order assigned to some example contours by this

sorting algorithm. The key thing to note is that a contour's position in the sequence

represents its spatial relationship with respect to all other contours in the image.

For example, in Figure 1, contour d is below and to the right of contour a.

Clearly, representing structure with order captures some, but not all, of the

structure information inherent in the positions of the contours. For starters, no

quantitative information is represented; "how much" contour d is below and right of

contour a is lost. This is advantageous - only the invariant qualitative structure is

captured by the ordering representation. In addition, the detailed information about
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d

Figure 1: Sorting Contours by Spatial Position

Order from Ohta and Kanade's (1985] sort:
acdb

the relative positions of contours is compressed into one relation - "before" and
"after".

Representing structure by spatial order trades off detail for efficiency. A single

number provides an unambiguous representation of the position of a feature, non-

locally relative to all others in the image. The fundamental spatial organization of

the image, which reflects the structure of the scene, is captured compactly.

5. Stereo Correspondence from Order Representing Structure

5.1 In Theory

In theory, computing correspondence from structure is quite straightforward.

One simple algorithm is as follows. Connected edge contours are extracted from both

left and right images. The contours from each image are sorted by spatial position,

generating a labelling sequence for each image. A contour's position in the sequence

assigns it a unique label for that image. If structural invariance holds, the matching

contour in the other image is assigned the same label in the sequence for that image.

In this way, the sequences from the spatial sorting process determine the correct

match for every contour in the stereo pair.

Thus, under ideal circumstances, the spatial sorting process alone is sufficient to

compute correspondence. Furtthermore, this matching algorithm is not susceptible

to ambiguity associated, with local "keyhole" analysis. Only real conditions of
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degeneracy in the world and imaging geometry can degrade the quality of the

correspondence (as described earlier). In addition, determining correspondence in

this way is computationally efficient. The complexity of this algorithm is a function

only of the cost of sorting the contours.

If spatial sorting of the contours is sufficient by itself to compute correspondence,

a subsequent computationally expensive dynamic programming process (such as

that in Ohta and Kanade's [19851 correspondence algorithm) is superfluous.

However, in less than ideal circumstances, the labelling sequences generated by the

spatial sorting process will not be exactly the same for the left and right images. In

this case, the ambiguity which does remain must be resolved, and the best overall

match of one sequence to the other must be computed. If order invariance can be

maintained, dynamic programming provides one way of computing this best

sequence match.

If a dynamic programming process is to be used to match the two sequences, the

simplest formulation is exactly that of equation 1. This represents a considerable

simplification from Ohta and Kanade's [1985] dynamic programming match.

Instead of a 3D dynamic programming process, only one simple and much more

efficient 2D table is used. No line-to-line correspondences need be computed.

Instead, the correspondence is computed from the non-local, invariant, structure-

derived ordering of the connected contours directly.

5.2 In Practice

In practice, difficulties arise which make the process more complex. The main

difficulty is due to signal noise and lighting change. In the face of real signals with

real signal noise, complete invariance of feature extraction can never be guaranteed.

Clearly, if the features themselves change from one instantiation to another,

representing their relationships invariantly is difficult. Therefore, the quality of

correspondence generated depends upon how robust the sorting and selection process

can be made. The sequence order in particular should be made as invariant as

possible to the effects of noise.

Consider the problem of an "extra" edge. The presence of noise implies the

possibility that an edge (or contour) might be detected in one image but not the

other. For sequences generated from simple one dimensional spatial sorts along
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scan lines (as used, for example, in [Baker 1982]) the ordering relationship between

the edges remains the same in each image, even though edges may be deleted or

added. The consequences of an "extra" edge for the increasingly non-local sort used

by Ohta and Kanade [1985] are much more severe. Figure 2 shows how the removal

of a single "noise" edge from the set of contours radically alters the order generated

from Ohta and Kanade's sort. Under these circumstances, it becomes more difficult

to compute correspondence with dynamic programming based algorithms. This

situation can arise because Ohta and Kanade's sort is indifferent to the order of

contours with no left-to-right dependence along a scan line.

It is possible to develop spatial sorting algorithms whi'h are more robust against

effects of noise such as these. Ohta and Kanade's spatial sort is based on the

invariance of left-to-right ordering of contours along epipolar lines in a stereo pair.

But an invariant spatial relationship between contours is also present in the vertical

direction. An alternative sort which takes advantage of this fact uses top-to-bottom

order as a sort "key" as well. That is, both left-to-right precedence and top-to-bottom

precedence are used to order the contours. On a pairwise basis, these criteria are

mutually exclusive. But because of the transitivity of the left-of reiation, conflict

c e C e

alb ) d

f g f g

Left Image Right Image
(contour a isn't present)

Order from Ohta and Kanade's [1985] Order from Ohta and Kanade's [1985]
sort: afbgcde sort: bfcgde
Order from alternate sort: Order from alternate sort:

abcdfge bcdfge

Fig. 2: Spatial Sorting with Noise Contours
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between the two precedences is possible. In this case, the left-to-right precedence is
preferrtd. Example orderings generated by such a sort are given in Figure 2. Note

that the order which is computed remains invariant in the presence of insignificant
local change between -he images.

The adoption of additional strategies to address the effects of noise can make

order-based correspondence algorithms even more robust. For example, provision

must be made in the dynamic programming process for allowing multiple matches of

contours from the left image to a single contour in the right image, in case the
connectivity of extracted contours varies between the images. As in line-to-line
matching algorithms, provision must be made for skipping matches entirely. In

addition, incorporating coarse-to-fine analysis is a significant and proven strategy

for obtaining better correspondence results in the presence of noise.

6. Experiments

Because of their use of sequences generated by spatial ordering, the dynamic

prograrr ring based systems of Baker (1982] and Ohta and Kanade [1985] can be

seen as algorithms which match structure, with it's non-local invariant properties.
In both cases, however, the emphasis was upon line-to-line matching and the

dynamic programming search process itself.

Cooper et al [1987] built a system which depends more directly upon extracting,
representing and matching non-local invariant spatial structure over the entire
image. This systena uses both the modified sort described above, and the simplified

2D dynamic programming table which matches connected contours directly,
independent of line-to-line matches. In addition, it incorporates coarse-to-fine multi-

resolution analysis. In all, this system uses three major principles to specifically

address the problem of local ambiguity in correspondence: invariant non-local

structure-derived order, figural continuity, and coarse-to-fine analysis.

In this section, the results of three radically different experiments with this

system are presented. The experiments were chosen to demonstrate the strength of

the principle of matching from invariant non-local structure.

6.1 Satellite Images

Figures 3 though 6 show results of a previous experiment with this system, taken
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Original Satellite Image Comparative Profiles Through Depth Maps

Figure 5: Death Valley Scene - Fig 6: Death Valley Scene -
Stereo- Derived Digital Terrain Map Reference Digital Terrain Map
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from Cooper et al [1987]. In this experiment, real depths were generated from stereo

satellite images and compared against reference digital terrain maps. Figure 3
shows one of the original images, a Landsat image of the Death Valley area in
California. Figure 4 shows profiles extracted from both the reference depth map and
the stereo-derived depth map (along a 'vertical' line running approximately through
the middle of the scene). Figures 5 and 6 show the stereo-derived and reference
depth maps in their entirety, with depth represented by intensity. The stereo pair in
this case was acquired by the same satellite from radically different viewpoints, on
different days, and under different lighting conditions. Over the entire scene, the
RMS error between the reference map and the correspondence-derived depths was

less than 60 meters. The quality of this result is particularly surprising given the
resolution of the images, and the standard error of the reference map (60 meters).
Further details and other results of this type are given in Cooper et al [1987].

6.2 Tinker Toy Domain

Figures 7 through 12 show the result of applying correspondence from structure

to the Tinker Toy domain [Cooper and Hollbach 1987]. Figures 7 and 8 show the left
and right images from the stereo pair, acquired by stereo CCD cameras in the vision
lab of the University of Rochester. (The images as presented can be perceived in 3D).
The object, constructed of Tinker Toys, is a model of the dinosaur Tyrannosaurus
Rex. This particular test case is characterized by sharply discontinuous depths
varying over a wide range, as well as the presence of surfaces (and contours) in one

images which are occluded in the other image. (See, for example, the side of the
object's head in the left image). The range of disparities in this experiment is 47
pixels, consituting about 1/3 of the width of the image of the object. This provides a

particularly severe test of the correspondence process, as witnessed by the different
tip from vertical of the object in each image.

Figures 9 and 10 are the connected contours extracted from the left and right
images, respectively. A total of 46 distinct contours were detected in the left image,

and 38 contours were detected in the right image. Note that the sets of contours are
not identical, although nearly all of the important contours have been detected and

connected correctly in both images. (Horizontal contours, from which it is difficult to
extract depths when matched, are not shown in these figures).

7B-C-13



Figure 7: T. Rex Scene - Figure 8: T. Rex Scene -
Left Image of Tinker Right Image

Toy Object

(j 1/'.) C':

Figure 9: T. Rex Scene - Figure 10: T. Rex Scene -

Connected Contours Extracted Connected Contours Extracted
from Left Image from Right Image
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The correspondence process matches the connected contours. An x-y plot of the

contours which were matched in the this case is given in Figure 11. (The matched

contours are given in right image coordinates). As can be seen if Figure 11 is

compared with Figure 10, each of the 38 contours is essigned a match along most of

its length. All 38 matches were correctly determined in this case.

Finally, the accuracy of the disparity results which were computed from the

correspondence can be seen in Figure 12. This figure is effectively a "side view" of

the matched contours. The central axes of the body show continous depth variation,

and the curvature of the head (a Tinker Toy "disk" at right angles to the cameras) is

evident. The correspondence was obviously not confused by the abrupt depth

differences between, for example, the forward projecting legs and the rear pointing

tail.

6.3 Structured Light Experiment

Figures 13 and 14 show the stereo pair for a possibly even more challenging

correspondence experiment. In this test, structured light consisting of parallel white

stripes was projected onto simple geometric objects in a scene. (Once again the

images were acquired by stereo CCD cameras mounted on the robotic 'head' in the

vision lab at the University of Rochester). The object in the foreground is a sphere on

a cylindrical mount, and in the background is a planar surface tipped so that it's

depth varies from left to right throughout the scene.

The most interesting aspect of this experiment is the periodic nature of the

contour features. Any matching algorithm which depends only upon a local analysis

of these images will face unresolvable ambiguity in attempting to match the stripes

(or contours), because of their periodicity. Furthermore, the disparity range over

which matching must occur is again rather severe - a total of 32 pixels in this case.

In fact, as can be observed when the two images are viewed in overlay, the disparity

range is large enough that the correctly corresponding light stripes are offset by one

entire stripe in some places. (In effect, the phase of the match is offset by one cycle at

some places in the scene). There is also once again abrupt depth discontinuity

present in the scene, as the sphere's edge constitutes an occluding boundary relative

to the background plane. All in all, the experiment represents a near worst case test
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Figure 13: Structured Light Scene -
Left Image

Figure 14: Structured Light Scene -
Right Image
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Figure 15: Structured Light Scene

Connecte CnorfomLftmg

Figure 16: Structured Light Scene -

Connected Contours from Right Image
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for most correspondence algorithms. As will be seen, matching non-local invariant

structure-derived sequences is sufficient to address these difficulties.

Figures 15 and 16 show the extracted and linked contours for the left and right

images. In all cases, each edge of a stripe was detected and linked over it's entire
continuous length in the scene. A particularly impressive case is found at the right
hand side of the sphere in the left image (Figure 13), where the stripes are detected

separately within a few pixels of each other across the occluding depth discontinuity.

Figures 17 and 18 show a presentation of the disparities which were computed by

the correspondence process. Because of the nature of the scene in this test case, the
most convenient presentation of the results was obtained by generating an

interpolated surface from the matched contours. The "S" statistics package [Becker
and Chambers 1984] was used to generate the interpolated surface from the matched
contours, as well as the perspective and contour plots of the surface shown in Figures
17 and 18. As can be observed, the correspondence computed by the matching

algorithm was very nearly perfect. For example, the stripes on both sides of the
occluding boundary on the right side of the sphere were correctly matched, yielding

an impressive depth discontinuity in the interpolated surface.

One aspect of the experimental results is particularly interesting. After the

spatial sorting process, a large fraction of the correct matches typically appear on or
near the diagonal of the dynamic programming table. For example, consider the

structured light experiment. Figures 15 and 16 show 100 and 97 distinct contours
extracted from the left and right images, respectively. The dynamic programming

table therefore contains about 10,000 or O(n2) elements in this case, each of which
corresponds to a particular contour pairing. Furthermore, each of these potential
pairings looks equally good, based upon a purely local evaluation. (Because of the
repetitive nature of the test case, the local characteristics of the contours are largely

the same. Most contours have the same shape and contrast, and even share the
same epipolar line coordinates). Therefore, as far as an uninformed dynamic
progamming process is concerned, a vast majority of the 10,000 potential pairings

must be presumed to be candidates for the best overall match.

But following the spatial sorting process, all of the correct matches are found on
or near the diagonal of the table. (During the actual experiment, the correspondence
process assigned 96 matches, all of which were on or near the diagonal). In general,
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Figure 17: Structured Light Scene -
Perspective View of Interpolated

Disparity Surface
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Figure 18: Structured Light Scene.
Contour Plot of Interpolated Disparity Surface

(Lines are contours of constant disparity)
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the region on or near the diagonal constitutes only 0(n) of the potential pairings
(on'y a few hundred in this case!), rather than O(n2). This indicates the extent to
V, Ach the correspondence has been determined by the sorting process alone. The
dynamic programming process is serving largely to resolve the minor ambiguities
which remain following the sort.

As other experients have revealed, it is also true that once an ordering has been
established, minor changes in the local score computation have little significant
effect on the overall correspondence that is computed. On the other hand, minor
changes to the ordering mechanism result in dramatic changes in the
correspondence which is computed. This further emphasizes the importance of the
structure-derived order in the correspondence computation.

6. Conclusions

This paper has addressed questions of why good correspondence algorithms work
well. There are at least two major underlying problems in computing image

correspondence - "keyhole effect" ambiguity due to local analysis, and variation due
to noise and viewpoint change. To compensate for the latter problem, invariant
features such as edges and contours are extracted from image intensity data and
matched in a coarse-to-fine or scale-space framework.

The central contribution of this paper has been to demonstrate that extracting
and representing the spatial structure of a scene provides a very powerful way to
remove local match ambiguity and compute robust and high quality

correspondences. Image structure can be effectively represented with an ordering of
image features based on spatial position. For correspondence, representing

structure by order in this way has two main strengths: it is non-local in nature, and
it is invariant with respect to viewpoint change and signal noise. Representing

structure with order also allows dynamic programming to be used as a framework to
resolve remaining ambiguity in best match selection. In practice however, this

dynamic programming stage is nearly superfluous.
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Abstract

Parameterization of textures can be useful for detection of textual similarities
and matching. In this project we have developed a stochastic model to generate a set
of parameters from the texture image domain and frequency domain. This model is
aimed at quantification of textures for detection of similarities and differences . Our
attention has been concentrated on the parameterization of mottled textures.

To test the model we have used it to generate texture images back from the
parameters obtained from image analysis. The similarities and differences between
the generated image and original images are used to refine and test the parametric
model.
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1 Introduction

The analysis of texture is often an important step in classifying and analyzing
image fields. Yet texture measurement remains a highly nebulous subject. Many
measures have been proposed, but their effectiveness is questionable because the
qtr-c ural charucteristics of textux al fields are still ill defined [8]. In a survey of the
subject Haralick contended that "despite its importance and ubiquity in image data,
a formal approach or precise definition of texture does not ezist"[4]. Over the past
few years various techniques have been developed for the analysis of textures. These
techniques are basically of two types -

1) Structural methods

Textures can be described in terms of a set of primitives and placement rules.
This point of view was first expounded by Rosenfield and Lipkin (103. This sort
of framework has similarity to language where the primitives can be seen as
being symbols with the placement rule as the grammar for the language. The
textures that can be described easily using this kind of framework have well
defined primitives with obvious placement rules. For example in a chessboard
the white and black squares can be viewed as the primitives with replacement
rules to replace a white (black) square by a white (black) square with black
(white) adjacent to it. The rules also ensure that the replacement rules can
only terminate if the board is a square.

2) Statistical methods

Structural methods though preferable would usually be hard to obtain from a
given image unless the broad characteristics of the image is known
beforehand. The various methods of statistical analysis of images studied
include the consideration of auto-correlation,Markov processes and co-
occurrence statistics [8]. The statistical measures are specially attractive due
to the ease with which they can be obtained from the image. The disadvantage
of the statistical methods is that in practice different textures may give the
same set of parameters. If enough parameters are used so that different
images give different sets of parameters then the amount of parameters
required can be huge. However the statistical methods are usefulif only the
broad characteristics of the image is desired. Moreover if the range of images
on which the parameterization is to be done is known and we are to
disambij~uate among them then the parameters can be selected to suit the
application.

2 Parameters

It is convenient to parameterize an image in some way so that similarities in
images can be detected. The way the image characteristics vary over some domain
can be a useful criterion for detecting similarities. With a constrained domain it
may be possible to parameterize a texture model in a useful way. In our case the goal
is to quantify the informal notion of the mottle severity and to do it we employ a
statistical model.

2.1 Frequency Domain
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The frequency domain parameters are useful in expressing the spatial
regularities in the image. The radial density in the frequency domain indicates the
size distribution of image components (for example the size of the square in the
checkerboard). Many textures show preferential density at only a few frequencies
depending on the number of basic texel types in the image. The angular density
indicates the orientation of the components of the image. If the texels of the image
follow certain specific placement rules then the orientation of the image determines
the angular density. On the other hand if the orientation of the texels are not at all
constrained by the placement of the neighbouring texels then the angular density is
more or less uniform throughout the angular domain. The orientation distribution
may characterize the image to certain extent. For example in a chess board image
the angular density is concentrated in two perpendicular directions whereas an
image of randomly oriented tiles shows uniform angular density.

2.2 Spatial Domain

Spatial domain parameters indicate the gray level distribution itself. For the
textures that do not show selective frequency or angular preference the image
domain parameters indicate how the image characteristics are distributed. The
various statistical image domain parameters that can be considered useful include
the mean, variance, skewness and kurtosis of the pixel gray level values. The
parameters thus obtained are likely to be the same for similar images and different
or dssimilar images.

2.3 Reconstruction

For texturesthat show regularity or controlled randomness in the frequency
domain it may be possible to reconstruct the main characteristics of the images using
the frequency domain parameters. Our model for reconstruction assumes such
characteristics. The concentration has been on the frequency domain parameters
because mottle is a large-scale phenomenon whose statistical characterization in the
spatial domain seems impractical [5].

For regeneration of images from the frequency domain parameters we
distribute a ixed number of points in the frequency domain using the parameters of
radial and angular density obtained from the Fourier analysis of the image. This is
done so that the frequency and angular properties of the original image are
maintained in the generated image. This frequency domain reconstruction is used to
generate the image back by using the inverse Fourier transform. In all that follows,
"reconstruction" actually means generation of a texture that should be similar to the
original according to the relevant quantitative and psychophysical criteria. The goal
is to produce textures that are different instances of what a viewer would call "the
same texture.

3 A Mottle Model

Mottled textures arise in both industrial and in natural environments. An
industrial mottle sample and is shown below (figure 1) [3]. In appearance, mottle is
coarsely irregular or blotchy, without sharp intensity changes. Neither pixel
statistics nor structural texture description methods seem well adapted to
characterizing mottled textures [4,8]. Fractal dimension was considered, but would
be a better model for turbulence. Fourier methods appear to offer the best hope,
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although they have been superceded in many domains. Both of the traditional
fourier domain approaches are inadequate, though: human inspection of the power
spectrum is not quantitative, and reduction to radial or annular bins provides too
much unstructured detail.

Our model is a stochastic, terse description of the spatial frequency content of a
sample and its contrast. Our hopes are that

(1) the parameters of our model will decouple,

(2) the parameters will correspond in an intuitive way with texture
characteristics,

(3) the parameters may be extracted from data samples, and

(4) a simple combination of at most two measures will correlate well with
industrial standard metrics for mottle severity [3].

If we are successful, most of the model parameters will be constant for a
particular application, and the remaining simplified model will be useful in practice.
However, there is significant leeway for extending this model (through more
complex and interdependent probability density functions, for example.)

Our strategy is to develop and understand a generative model and then work
on extracting its parameters from real images.

Phenomenologically it seems that mottle samples could be represented by
distributions of points in frequency space. Each frequency space point can be
represented by p, its radial distance from the origin; 6, the angle of that radial vector
and Z, the complex vector representing the weight of this Fourier component. These
parameters should be sufficient to generate mottle, but one important component of
texture seems to be its "contrast". In the model so far, contrast depends in a complex
way on the joint properties of the other three parameters. Thus our strategy is to
characterize the geometric parameters as simply and independently as possible and
to add a "contrast parameter". This decoupling is highly desirable from many points
of view.

Assuming the parameters are independent, an MxM mottled image may be
generated by the following simple model.

(1) P(p), the probability distribution function of p (p varies from 0 to M/2 or
substantially less.) This parameter is related to spatial extent of mottle.

(2) P(O), the pdfofE (0 varies from 0 to 180 degrees.) This parameter is related
to the directionality of mottle.

(3) P(Zreal), P(Zima ginary) the pdfs of frequency components. These
parameters are related to contrast, brightness, and appearance of mottle.
We will refer to the two distributions by the shorthand, P(Z).

(4) N: the number of frequency components to use in texture synthesis.
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Figure 1: Mottle sample, courtesy Eastman Kodak Company. This image is a
photograph of an Ikonas video display, showing a) digitized vidicon image trimmed
to eliminate the effects of an unevenly lit light table, and b) the same image scaled
linearly for maximum displayable dynamic range.

(5) S, a function mapping Image intensities X parameters -- > image
intensities, and acting as a scaling filter that provides variable contrast of
the final output.

The process is to generate N random points (p, 8, Z) and place them along with
their complex conjugate reflections in Fourier space, so that their inverse transform
is real. P(p), P(O), and P(Z) are independent. Joint distributions are of course more
general but harder to characterize, and we hope they are unnecessary. The inverse
Fourier transform is applied, then S, the scaling function, is applied to adjust the"contrast" of the result. The computational steps in the model are diagrammed in
fig. 2.

In our current version of the model we have chosen uniform distributions for
the parameters p, 8, and Z, and (rather arbitrarily) an exponential x' = xy scaling
function. Another candidate is a linear (x' = ax + b) scaling model. The S function
finally chosen should relate in a simple way to the underlying physical causes of
mottle or to the phenomenal characteristics of industry standards. Each parameter
is thus characterized by two probability distribution parameters. In the table below
we give the probability distribution parameters that we have used in texture
generation experiments. The mean and standard deviation are easily related both to
the other distributions (especially gaussian and poisson) and to measurements on
real data.
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param p distribution

p 1-10 1/2-6 uniform

e 90 52 uniform

Z 0 60 uniform

N 1-256 0 constant

y 0.7-3. 0 constant

Figure 2: The series of transformations: From Fourier space to image space via an
inverse Fourier transform, followed by gamma filtering.

4 Texture Generation Experiments

A program was written to generate textures according to the parameters given
in the previous section. Representative samples of artificial textures are shown in
figures 3, 4, 5, and 6.
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Figure 3: Artificially generated textures: 0 < p< 4, 0 < 6e < = 180, ZrealZimragiriary = 10, Y= 0.9. From left to right, the columns have N =8, 16, 32, 64,128, and 2B6.
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Figure 4: Artificially generated textures: 0 <z p <= 3 for the first three rows and 0<= p < = 4 for the lower four, 0 < = e < 180, 0 < Zreal,Zimaginary < = 10, (1-0.99. From left to right, the columns have N = 8, 16, 32, 64, 128, and 2536.
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Figure 5: Artificially generated textures: 0 <= p < 6 for the first three rows and 0
< p< =4 for the lower four, 0 < = e < = 180, 0 < = Zreal.Zimagi nary < = 10,

N = 64. From left wo right, the ro~ws have y= 0.7, 0.8, 0.9. 1.0, 2.0, and 3.0-
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Figure 6: Artificially generated textures. The bottom left image is the original: the
rest of the row shows the image compressed to 64 gray levels and displayed a: offsets
0. 64, 128, and 192. The upper row uses the same offsets but only 32 gray levels.

5 Refinements

Generation of textures has verified that the fourier domain mottle model has
some descriptive power. Computerized texture generation could also be a means to
development of quantitative quality standards. A number of refinements could be
made, however. These include:

(1) Multiplicative (linear) scale filter. This issue can be based on the. hysics
of mottle formation or the psychophysics of human detection of mottle. We
plan to treat it as an experimental issue so that we can simplify the
relation of the scaling function to industrial standards.

(2) Normalized mean brightness. This parameter raises or lowers the overall
brightness over which the mottle ranges. It can thus be used to ensure that
the appearance of mottle reflects the differing effects of various fllm
substrates. It is useful because it is psychophysically important: a dark
image is hard to compare with a bright one.
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(3) Addition or high frequency noise to simulate grain. This could be an
independent parameter. It could alternatively be included by modifying
the probability density functions P(6), P(p), and P(Z).

(4) Joint probability distribution functions. If our variables cannot be
adequately approximated by independent probability distribution
functions, more sophisticated stochastic methods must be used.

(5) Poisson or Gaussian distributions. Uniform distributions will be useful,
but other distributions could be even better.

6 The model parameters

For textures showing dominant directional or spatial frequency characteristics
it should be possible to represent the sample using the radial distribution(denoting
frequencies) and angular distribution (denoting angular direction preference ) in the
frequency domain. Moreover from the distribution of magnitude of the Fourier
domain points we should be able to know how the concentration of angular and
frequency preference is weighted.

To achieve our goal of texture quantification it is necessary to obtain some
parameters from the image domain. The parameters that seem to be most useful are
mean and contrast measurements with respect to the gray levels. Besides these it
would be useful to know how the mean and contrasts vary when we look at different
portions of the images. This quantifies certain basic variations between different
portions of the image.

Thus the model consists of two type of parameters, one set in the frequency
domain and another in the image domain.

6.1 Frequency domain parameters

The frequency domain parameters are useful for those images that show
preferential spatial frequency or direction or both. The extraction of this type of
characteristic is easier using the frequency domain directly. Imagine figuring out
what the sizes of the texels are (given that the texels in the image have only a fixed
number of different characteristic sizes) from the raw gray levels. On the other hand
from the frequency domain the characteristic sizes may be found from the peaht in
the radial spatial frequency distribution. Moreover if the image consists of many
frequencies distributed in some random way (say normal, uniform or any such
distribution) then studying the frequency domain radial density can give the
parameters of the distribution easily. Moreover the distribution form can also be
checked using various correlation techniques. The directional preference can also be
easily found using the frequency domain. In such case we only have to look at the
angular density. Uniform angular density indicates a random orientation of the
texels whereas sharp peaks in the angular density histogram give the orientation of
the underlying spatial frequencies and thus the texels themselves.

Thus the frequency domain parameters in the model consist of the distribution
with respect to the radial and angular density. Besides this the distribution with
respect to density at different magnitude of Z, Zreal and Zimag in the frequency
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domain was also considered. These distributions describing the frequency domain

representation of the image are the following:

1) The distribution of spatial frequency density with respect to radial distance

This distribution can be calculated by summing up the frequency domain
values of all the points at a iven distance from the origin. If the probability
distribution of the frequency is needed then it can be calculated by dividing the
individual densities by the sum over the densities at all the frequencies. The
formula for calculating the individual density is given by

£ J

where

Z(ij) is the power spectrum value at ij

(Xc,Yc )is the center point

Dist. is the function to calculate distance

p is the radial distance.

k is for real, imaginary or magnitude.

In the above formula k is to denote the distribution with respect to real , imaginary
or the magnitude of the Fourier tranform. Note that we should take the modulus for
the real and imaginary distributions. The average frequency (radial distance) can be
calculated by summing the product of radial distance and probability for that radial
distance. Similarly the variance can be calculated by taking the product of the
probability and the square of the difference of the radial distance and the average
radial distance. Note that in a similar way we can calculate skewness, kurtosis and
higher order terms by taking different powers of the difference from the mean.

2) The distribution with respect to angle

The distribution of the angular density can be calculated in the same way by
summing up the Fourier domain values of all oints such that the angle formed
by the line joining the point to the origin with the X axis is E. The probability
distribution with respect to angle can also be calculated in a similar way by
dividing the density by the sum of the densities at all the angles. The formula to
calculate the angular density is given by

P*0) (Z k(ij)~ angle[I(iJ), (xC,YdJ=
a j

where

angle is the function to calculate angle.

0 is the angle

k is for real, imaginary or magnitude.
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The average and variance of the angle can also be calculated in the same way as in 1.
Again higher order terms can also be easily obtained from the probability
distribution.

3) The distribution of Z the power spectrum value

The distribution of the power spectrum value can be calculated by calculating
the number of points that have that power spectrum value. The probability of aparticular point having a particular value of Z (the power spectrum value ) can
be calculated by dividing the density at Z by the total number of points. The
average value of Z can be calculated by summing the product ofZ and the
probability of a point having Z as the power spectrum value. The variance can
similarly be calculated by taking the sum over the product of the probability
and the square of the difference from the mean. Again we can calculate the
higher order terms also if required. The formula for calculating the density is
given below.

P(z - (11[ Mzij) =-)

where

Z(zj) is the power spectrum value.

4) The distribution of real part of the Fourier transform

The distribution of density at the different values of real part of power
spectrum can also be calculated in the same way as 3 above. Note however that
the magnitude of the real part is considered. Again the average and variance
can be calculated in the same way as above.

P(reat) (1): ReaI(Z~ij)) =real)

i J

where

Real(Z(ij)) is the real part of Fourier transform

5) The distribution of the imaginary part of the Fourier transform

The distribution of density at different values of imaginary part of the power
spectrum can also be calculated in the same way as 3 and 4 above. Note that in
this case also we take the magnitude of the imaginary part of the power
spectrum (otherwise the sum would be 0O!).The average and variance can also be
calculated similarly.

P(imag) = (1): 1 Imag(Z(ij)) = imag)
I .J

where

Imag(Z(Lj)) is the imaginary part of Fourier transform
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In representing the distributions, a conservative approach is to keep the complete
distribution. However for characterization of the image the simple statistical
parameters such as average and variance of the distribution should be enough since
most textures show highly preferential frequency and direction preference. Ut the
distribution ot the varous vaiues (such as frequency and direction) is expected to be
non uniform on the two sides of the mean then the higher order terms can also be
used. In general, the adequacy of characterization of a particular domain by a
particular set of parameters is an empirical issue.

6.2 Spatial domain parameters

The frequency domain parameters are often not enough to characterize the
image. This is especially so if the image does not show uniformity in the frequency
distribution. In such cases it is useful to go back to the image domain
parameterization. Moreover the actual image domain parameters are more likely to
indicate the form of images to humans. The distribution of grey levels in the local
neighbourhood of the points gives an indication of what the image looks like. The
overall distribution of the parameters obtained at local neighbourhood of the image
indicates the global characteristics of the image.

The image domain parameters consist of the parameters obtained from the
calculation of mean, variance and ratio of dynamic range to the maximum in the
local neighbourhood of the image point varying over the image domain.

The mean denotes the average intensity at the local neighbourhood. The
variance and the ratio of dynamic range and maximum indicate the contrast at the
local neighbourhood of the point.

The overall mean and variance of the above desired distributions indicates
certain global properties. For example the variance of variance indicates how the
contrast varies as we move to different positions in the image.

1) The distribution of mean

The mean at the local neighbourhood of a point I(ij) indicates the average
intensity around that point of the image. We can consider the local
neighbourhood as the points which are within a certain distance of(ij) in some
convenient metric. Any of the local neighbourhood criteria can be used. We
have used the city block metric in our work. The formula for calculating the
average intensity at a point (ij) can be given as follows

PG~J) = ( -L) I I (.,)I
z y

where

x and y vary over the local neighbourhood.

m is the size of the neighbourhood.

I(x,y) is the gray level value at the point (xy)
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The mean of the above p can be calculated by summing up the p 's and dividing by
the total number of points for which p was taken. The variance can also be calculated
as it was calculated for the frequency domain parameters. The mean of mean gives
the indication of global mean. The variae of the means is one measure of perceived
contrast, "but contrast is a complex perceptual phenomenon".

2) The distribution of the variance

In some models of texture, variance in the local neighbourhood indicates the local
turbulence in the grey level values. Moreover the variance in the local
neighbourhood can also be used to determine if the size of the neighbourhood
chosen is reasonable for the given image. The desirable size of the neighbourhood
should not be much larger than the texel size. The size of the neighbourhood
should similarly not be too small. The variance at different neighbourhood size
can thus give indication of the texel size. The variance of a local neighbourhood
of the point is calculated as follows

where x,y vary as above

The mean and variance of the variance can be calculated in the same way as other
means and variances. The mean of the variance indicates the average turbulence in
the gray levels. The variance of variance would indicate how the contrast varies over
the whole image.

3) The distribution of dynamic range-maximum ratio

The dynamic range of the gray level is defined as the difference between the
maximum and the minimum values of the gray levels.

The ratio of the dynamic range and the maximum gray level value in the local
neighbourhood of the point is another form of contrast measurement which
indicates how steeply the gray level value is changing in a local neighbourhood.
Again this can also be used as the guide for guessing the texel size. The formula
to obtain this ratio is

max (I(Wxy)) - min (x,y))

max (I(xy))

where xy vary as above.

The mean and variances of R(ij) are calculated in the same way as we calculated
the means and variances of other parameters. The mean of this ratio indicates the
expected local steepness in the gray level values. The variance indicates how the
steepness varies over the whole image domain.

Instead of the actual distribution, the number of parameters car, be reduced by
keeping only mean and variance of the above three distributions. The mean and
variance would indicate the global average and variation in the local properties.
These parameters can be used to quantify certain aspects of the image in spatial
domain.
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7 Experiments

We ran several experiments for three types of textures.

1) A digital image of a mottle standard from Eastman Kodak Company.

2) Unfocussed images of certain textures from Brodatz's book[2].

3) synthetic mottle generated by running the model in a generative mode (see
Figs. 3-5) (4].

Tables 1 and 2a&b show parameters derived from these textures and
demonstrate a certain consistency with intuition about textural similarity. Figs. 7
and 8 show representative textures, a subset of those used in the study.

Image Avg p Avg V Avg R Var p Var V Var R

mot2 122 25.9 0.19 173 257 0.002

mot 132 16.7 0.16 23 33.1 0.0005

Br4 173 258 0.50 79 9987 0.012

Brl 239 580 0.49 49 1.76E5 0.022

Br3 166 2613 0.85 151 3.3E5 0.005

Br5 135 2589 0.93 130 2.8E5 0.002

Br2 230 1176 0.59 49 1.65E5 0.01

Hin2 124.64 722.36 0.577 332.07 2.63E5 0.011

Hinl 125.18 604.4 0.51 331.58 3.76E5 0.0267

mot3 222.98 994 0.46 290.41 2.52E5 0.009

Table 1: Spatial domain data
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Image Var p Vare6 Var Z Var Zr Var Z

mot2 595 3.328 4.16 E6 9.78 E5 3.2 E6

moti 524 3.265 4.84 E5 2.01 E5 3.17 E5

Br4 288 3.24 4.12 E6 1.62 E6 2.82 E6

Bri 301 3.26 7.19 E6 3.73 E6 4.00 E6

Br3 320 3.20 2.84 E7 1.58 E7 1.58 E7

Br5 309 3.21 2.89 E7 1.54 E7 1.67 E7

Wr 269 3.17 1.49 E7 7.29 E6 8.63 E6

Hin2 367 3.21 3.13E6 1.64E6 1.48E6

Hini 380 3.45 2.95E6 1.18E6 1.78E6

mot3 390 3.45 1.87E7 19.34E6 9.91 E6

Table 2a: Frequency domain data

Image Avg p Avg 0~ Avg Z Avg Z r Avg Z,

mot2 38.41 3.02 559.77 336.46 379.45

motl 43.65 3.11 421.73 264.54 270.60

Br4 31.37 3.09 1284.4 800.51 828

Bri 29.26 3.11 1713 1095 1091

Br3 33.40 3.09 4157 2686 2619

8r5 32.60 3.07 4065 2542 2633

Wr 29.07 3.04 2350 1460 1529

Hin2 13.11 2.73 86.02 57.88 55.62

Hini 13.37 2.94 82.87 47.30 59.53

mot3 25.87 13.1 1713 11099 1086

Table 2b: Frequency domain data

8 Reconstruction

As observed before for textures showing special characteristics in the Fourier
domain it should be possible to reconstruct afi image similar to the original from the
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parameters calculated in the frequency domain. For textures such as mottles it may
also be possible to reconstruct using only the image domain parameters. For
reconstruction from spatial domain parameters we can give the gray level values of
the pixels according the the distribution in the neighbourhood if the distribution of
the various parameters in the local neighbourhood of the point is kept. For textures
that seem more or less uniform we can distribute the gray levels based only on the
global characteristics.

For reconstruction from the frequency domain parameters we can distribute
some points in the frequency domain according to the density in the radial and
angular bins. For textures that show very concentrated radial and angular
preference only the statistical parameters of the radial and angular distribution may
be needed for generation of points.

8.1 Reconstruction from frequency domain parameters

For reconstruction it might be expected that we would require to keep a large
number of parameters. However if the texture shows a special form of distribution in
the radial and angular direction then by knowing the characteristics of the
distribution we can generate the frequency domain points according to the
characteristics of the distribution. For example suppose we know that the frequency
domain points of the image show a uniform distribution with certain mean and
variance for both radial and angular direction. Then we can distribute the points
uniformly in the frequency domain with the corresponding mean and variances.
Various mottles were generated using such distribution with certain modifications.
The resemblance of the synthetic images with the actual mottles gave the
motivation for this project. We can similarly generate textures for various kinds of
distribution. If the distribution selected is one that is obtained from the parameters(
or the whole distribution ) obtained from the actual image we should get an image
similar to the original image. In our experiments so far we have used the full
distribution of p, 0 and real and imaginary Z distributions for generation, rather
than reconstructing the distributions from a few parameters.

The reconstruction from the distribution can be done as follows:

1) Select number of points N that will be distributed in the frequency domain.

2) Generate N points in the frequency domain according to the distribution
(i.e. generate X,Y,Zr,Zi for each point such that the distribution and density
of the points follow the characteristics of the original distribution).

3) Take the inverse Fourier tranform to generate the image.

4) Scale the image gray levels appropriately.

The number of points selected in the Fourier domain should not be too small
because in that case the distribution may not be able to capture the characteristics
of the image. Step number 2 above can be performed in various ways since
distributions are approximated by histograms and, in practice we can get similar
histograms by distributing the points and weights at those points in a number of
ways. This step is discussed in detail below. The scaling of the image is required
since the inverse Fourier transform thus generated may have negative values (since
the generated frequency domain points do not necessarily give an exact Fourier
transform of an image with positive gray level values). Moreover since the average
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intensity of the points may change we would have to do appropriate scaling of the
image so that the image generated wo A' have similar intensity to the original
(since the frequency domain analysis is supposed to give only the frequency and
angular distribution). This step can be done by calculating the average intensity of
the original image.

8.2 Distributing points according to desired histograms

The distribution of points according to the model or derived (approximate)
distribution parameters can be done in several ways. Some of the methods are
discussed below.

When the whole distribution of the radial and angular density is kept:

a) We can just distribute the points according to the radial and angular
probability distribution in the frequency domain. For this we can keep a
cumulative distribution of probability of any radius or angle. A random
value (uniform) is generated according to any of the standard random
number generating functions. The radius (angle ) in which this value falls
in the cumulative distribution can be taken as the radius (angle ) of the
generated point. The magnitude of the real and imaginary part of the
power spectrum can be chosen randomly according to their distribution.
This is the simplest way to distribute the points. The sign of the values can
again be taken randomly with probability half. Note that the points
generated should have a complex conjugate partner at a position (-x,-y)
(x,y is the position of the generated point). This is done so that we can get a
real image after taking the inverse transform.

b) Since a single high valued point at a higher frequency may generate high
frequency components even though the sum of the values at that frequency
is not considerable we would like to reduce the magnitude of the values at
the points at high frequency. This can be done in two ways. The simplest
way would be to reduce the intensity at any distance R by dividing it by R2
(i.e proportional to the number of points at that distance ). This method
discourages the high frequency components, Alternatively we can blur the
point at high frequency. This reduces the magnitude of points at high
frequency while keeping the total sum of values at high frequency
according to the distribution. Note that we would have to do superposition
if the effect of more than one point blurring is felt at some other point. This
blurring can be done in any form of distribution (gaussian or other
template such as 1/2 at center and rest in the neighbourhood of size
depending on the frequency). Other values can be found in the same way as
in (a) above.

c) In this case we can distribute the points randomly but take the weight at
those points according to the distribution. The points can be generated
according to any uniform distribution. In this case we would not have the
problem of high frequency having concentrated values. The total sum at
any frequency follows the distribution since there will be more points
generated at the high frequency. Note that the value generated at a
frequency should have the dividing factor of R2.

d) Another variation would be to combine the two ideas above i.e to generate
the points according to the probability distribution and then generate the
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values according to the density at those points. This method would
disfavour the high frequency components. This might be useful when high
frequency components are to be suppressed.

In all the above methods we keep the full distribution of the probability density
at any radius or angle. The strategy changes slightly when we have to generate
according to the distribution of points that follow a distribution pattern such as
normal, uniform or any known such distribution. Using distribution parameters
would be useful in decreasing the amount of information required to characterize the
texture. Not much work has been done on this kind of generation since the results
using distribution information are still not fully understood. Work in the immediate
future will concentrate on the regeneration issue. One idea is to distribute the points
and density in much the same way as above but instead of using the uniform
generation or the generation according to the distribution of density at a frequency
and angle we would generate points and values at the points using a random
generator which follows the characteristics of the known distribution. Random
generators for non-uniform distribution are more complicated (Knuth discuses the
generation of random numbers according to various types of distribution) [7].
Alternatively the characteristic distribution function of the desired distribution can
be computed analytically and used with the existing software.

8.3 Reconstruction from image domain parameters

For images that appear random and only the contrast or mean intensity seems
significant it may be possible to reconstruct the texture from the image domain
parameters. Moreover certain textures may not have a well defined frequency
preference nor have a reasonable pattern in which the frequencies are distributed.
For such images the frequency domain reconstruction may not give good
reconstruction. Thus it may be desirable to study the techniques to reconstruct the
images from the image domain parameters. The reasons for this type of
reconstruction are similar to the choice of using the image domain parameters.
Some mottled textures seem to be a likely candidate for this type of reconstruction.
However not much thought has been given to image domain models. The procedure
followed to reconstruct the image are quite similar to the frequency domain
reconstruction case.

In this case we take the parameters on the image domain. Then using the
distribution we calculate the value of the gray level at each point to obtain the
reconstructed image. If the statistical characteristics (such as mean, variance,
dynamic range) are kept for a neighbourhood of points selected at appropriate
distances (the appropriate distance being the size of the neighbourhood) then we can
generate the gray level values at the local neighbourhood according to the statistical
parameters at that distribution.The procedure for generating the gray level values is
the following:

For each selected point for which the local parameters were kept:

generate the gray level values of all the points in the local neighbourhood of the
Eoint such that it satisfies the mean, variance in that neighbourhood. This can

e done by assuming normal or uniform distribution in the local
neighbourhood. The resulting values can be appropriately scaled to satisfy the
dynamic range constraint.
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Note that due to normal or uniform distribution of gray level values in the local
neighbourhood the size of the neighbourhood should not be large (as compared to the
texel size). Moreover if we take the size to be too small then the number of
parameters kept would increase as the inverse of the square of the neighbourhood
size.

If the texture doesn't show any particular changes in mean,variance or
dynamic range as we concentrate on different portions of the image then we can keep
only the overall characteristics of the local characteristics. The local characteristics
can then be obtained by randomly selecting the local characteristics according to the
global values. The regeneration can then follow in the same way as if we had the
local characteristics.

9 Experiments on regeneration

Most of our work on regeneration of images was on the regeneration from
frequency domain parameters. We ran our model for reconstruction on various
mottled images from the Brodatz's book, a checkers board image and some of the
synthetic mottles of Hinkelman. Some of the images on which the-model was tried
along with their power spectrum, the generated power spectrum and the regenerated
image are shown in Figs. 9-13. The schemes used for the regeneration were the
following:

Fig. 9 (checkerboard image) -- schemes a and c mentioned in section 8.2.

Fig. 10 and 11 (Hinl and Hin2) -- schemes a and b mentioned in section 8.2.

Fig. 12 and 13 (Br3 and Br) -- schemes b and c mentioned in section 8.2.

The results were good for the checkerboard image. The results were not so good
for the mottles. The power spectrum of the various images were similar to the
generated ones as expected. The results for the images obtained by taking the
inverse Fourier transform were not as good as expected in the case of the mottles,
even though in most cases some of the characteristics of the images were captured in
the generated images.

10 Discussion

The parameters generated showed good similarities for similar type of images.
The method thus shows some promise for parameterization of the mottles. The
reconstruction for images which show a high degree of regularity such as
checkerboard can also be done with some correspondence between the original and
reconstructed image. The model thus could be used for reconstruction of textures
showing high degree of regularity. The reconstruction of mottles from the
parameters was not as successful. This may be due to the reason that there is a
lesser degree of regularity in the mottled images. To reconstruct the mottles we can
try variations of the idea so that the the generated images resemble the original
image to a greater extent. Various modifications of the above ideas can be tried so
that a better fit for the mottles can be found. Future work will concentrate along
these lines. The various models that can be tried are

1) Use the image domain parameters in the regeneration of the image.
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2) Use the Fourier domain parameterization to reconstruct the image. Use the
image domain parameters on the generated image to force some of the
image domain characteristics on the image.

3) Use various contrast measures obtained from the image (the contrast
measures can be the dynamic range, the variance etc.) and force them on the
regenerated image. This is likely to ensure that the various contrast
measures are preserved. Note that in forcing one of the characteristics we
may violate other properties. The way would be to find a compromise
between the various characteristics.

Another important topic is to extract the "contrast" parameter (the arguments
to the function S). This is much more interesting, especially because it is our hope
that the P(p), P(O), and P(Z) can be "frozen in' for a situation and the contrast
parameters will provide the quantitative measure of mottle severity. In this case
one way to extract the contrast parameters would be to choose a likely value (say y0

for definiteness), "unscale" by y0, (ie apply the inverse of the scaling using yO), then
do steps 1, 2, 3 above and check to see the resulting (p, o)s fit the mottle shape model.
If they do not, change yO to yl and repeat. The hope is that a hill-climbing process on
y will find that y which results in the best fit of the other mottle parameters to the
data.

An alternative approach to quantitative analysis with the model does not
assume that the P(p), P(O), and P(Z) can be "frozen in". In other words, it allows these
parameters to be calculated as part of the image quality estimation. Rather than
expending large amounts of effort on calculating a very accurate value for y based on
the other parameters, we fall back on our independence assumption. The first two
steps of the analysis process would be as in verifying the model, but rather than
finding y by means of a complicated iteration (hill-climbing), use some simpler
method:

(1) Fourier transform the image,

(2) Compute V, Y ofP(p), P(8), and P(Z)

(3) Apply a simple contrast measure.

In this case, the hope is that some carefully chosen but easily computable
contrast measure will be adequate to distinguish relevant variations in images.
Such a metric could address some of the psychobiological issues mentioned below, or
it could be a simple rule of thumb that happens to be effective. The difference
between the maximum and minimum image values is a very primitive measure:
another is the variance of the gray levels. The Spatial Gray Level Dependence
contrast measure is somewhat more sophisticated, and presupposes some estimate of
the scale. None of these has much psychophysical value, though. It is worth noting
that the limiting factor in performing the above analysis on line is the size of the
area analyzed, which determines the time of the Fourier Transform. The approach
mentioned above performs several Fourier Transforms and thus requires more time.
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Fig. 7: Textures used in the experiment

upper left: mottle picture obtained from Kodak (moti).
lower left: mottle picture obtained from Kodak (mot2).
upper middle: Brodatz's texture "Pressed cork" unfocussed (Bri).
lower middle: Brodatz's texture "Handmade paper" unfocussed (Br2).
upper right: Brodatz's texture "Pigskin" unfocussed (Br3)
lower right: Brodatz's texture "Pressed cork" unfocussed (Br4)

(different scaling than Bri).
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Fig. 8: Textures used in the experiment

upper left: another mottle texture (mot3).
lower left: Brodatz's texture "Pigskin" unfocussed (Br5) (different portion of the

same image as Br3).
upper right: Generated texture 1 (Hinl).
lower right: Generated texture 2 (Hin2).
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Fig. 9: Texture Reconstruction

lower left: The original image (chekerboard from (2)).
upper left: The power spectrum of the oriinal image.
lower middle and right: Reconstructed images using different generation schemes

(see text).
upper middle and right: Power spectrum of the reconstructed images.

Comiment: In reconstruction 1 (middle) The frequency has increased in vertical
direction. In i-econstruction 2 (right) there is a tilt in the direction and increase in
the vertical frequency. In reconstruction 1 the sharp parallel horizontal lines in the
fourier transform have not been captured. In 2 due to the scheme chosen the lines
have not been captured. Overall high amount of directional and frequency
information has been captured.
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Fig. 10: Texture Reconstruction.

lower left: The original image (Hinl).
upper left: The power spectrum of the ori nal image.
lower middle and right: Reconstructed images using different generation schemes

(see text).
upper middle and right: Power spectrum of the reconstructed images.

Comment: The power spectrum in the reconstruction resembles to a high extent
the original power spectrum. The slight amount of high frequencies in the original
spectrum has not been captured satisfactorily. The net frequency in the image seems
to have been reduced.
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Fig. 11: Texture Reconstruction.

lower left: The original image (Hin2).
upper left: The power spectrum of the oriinal image.
lower middle and right: Reconstructed images using different generation schemes

(see text).
upper middle and right: Power spectrum of the reconstructed images.

Comment: The power spectrum in the reconstruction resembles to a high extent
the original power spectrum. The slight amount of high frequencies in the original
spectrum has not been captured satisfactorily. However the frequency component is
better than in the previous (Hinl) image. he generated image has high angular
preference which is missing in the original image.
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Fig. 12: Texture Reconstruction.

lower left: The original image (Br3).
upper left: The power spectrum of the original image.
lower middle and right: Reconstructed images using different generation schemes

(see text).
upper middle and right: Power spectrum of the reconstructed images.

Comment: In this regeneration the brightness in the upper and lower middle portion
of the power spectrum is missing in the reconstructed power spectrum. The image
shows similarity in the frequency and randomness of the direction. The contrast is
higher in the generated image.
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inz.

Fig. 13: Texture Recognition

lower left: The original image (BR2)
upper left: The power spectrum of the original image.
lower middle and right: Reconstructed images using different generation schemes

(see text).
upper middle and right: Power spectrum of the reconstructed images.

Comment: The frequency component of the reconstructed image has been reduced
slightly. The contrast in the generated images has decreased. By increasing the
contrast, a better similarity may be achieved.
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ABSTRACT

Many computer vision problems can be formulated as computing the minimum energy states of
thermal dynamic systems. However, due to the complexity of the energy functions, the solutions to the
minimization problem are very difficult to acquire in practice. Stochastic and deterministic methods exist to
approximate the solutions, but they fail to be both efficient and robust. In this paper, we describe a new
deterministic method- the Highest Confidence First" algorithm - to approximate the minimum energy
solution to the image labeling problem under the Maximum A'Postenori (MAP) criterion. This method
uses Markov Random Fields to model spatial prior knowledge of images and likelihood probabilities to
represent external observations regarding hypotheses of image entities. Following an order decided by a
dynamic stability measure, the image entities make local estimates based on the combined knowledge of
priors and observations. We show that, in practice, the solutions so constructed compare favorably to the
ones produced by existing methods and that the computation is more predictable and less expensive.
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1. Introduction

Probability theory has found many applications in representing the uncertainty of
various kinds of knowledge and in reasoning about the world [Feldman and Yakimov-
sky 1974] (Duda, Hart, and Nilsson 1976] (Peleg 1980] (Pearl 19851 . It appeals to the Al
community for many reasons, among which are that it provides a well-developed
mathematical theory for using uncertainty measures in making decisions, and that it pro-
vides well-known ways of incorporating empirical data. However, there have been few suc-
cessful attempts at utilizing this tool in practical machine vision systems. It is apparently
not because this domain is any the less "uncertain" but because the complexity of the
information in this domain hinders the advancement of probabilistic approaches.

It is our goal to demonstrate the practicability of applying the Bayesian-probability
formalism to complex domains, such as the image labeling problem discussed in this paper.
The image labeling problem is to assign labels to image entities such as regions, line seg-
ments, and pixels. The set of labels, usually reflecting the photometric and geometrical
phenomena of the scene, is mutually exclusive and exhaustive at a particular level of
abstraction. Denote the set of labels { 11,1 2 ... , lQ I as L, and the set of the image entities
1 s, 32,.. ., S} as S. Any mapping from S to L is a feasible solution to the labeling
problem. To choose an "optimal" solution from the set of feasible solutions - Q, image
observations as well as prior knowledge about spatial relations between labels are used to
evaluate the goodness of each solution. This work follows the probabilistic model for visual

computation proposed in (Chou and Brown 1987b]. Spatial prior knowledge and local visual
observations are separately represented in terms of probabilities. This decoupling provides
a clean and uniform way of modeling information at different levels of abstraction, and
therefore to modularize the design and implementation of probabilistic systems. Bayes'
rule is used to combine priors and observations to form the a posteriori probabilities
representing the updated knowledge. The labeling problem is then formulated as a minimi-
zation problem based on the Bayesian decision rationale. We shall show that by using a
new algorithm proposed here to estimate the optimal solution to the minimization problem
so formulated, it is possible to achieve excellent results with relatively little computation,
given a set of reasonable assumptions.

The organization of this paper is as follows. We discuss how to encode the a priori
knowledge of image events with the Markov random field (MRF) models in Section 2. The
Bayesian decision rationale is discussed in Section 3. In Section 4, we review several sto-
chastic relaxation methods that, in principle, could find the optimal solutions given enough
computational resources. We describe a new deterministic estimation algorithm in Section
5 that our experiments indicate to be superior to existing methods. Experiments on edge
detection - an instance of the labeling problem - with both synthetic and natural images
are conducted with an MRF simulation/estimation package implemented by the authors
Results from various estimation schemes are compared in Section 6.

2. Markov Random Fields and Gibbs Distributions

Markov Random Fields have been used for image modeling in many applications for
the past few years (Hassner and Slansky 1980] (Cross and Jain 1983] [Marroquin, Mitter,

and Poggio 19851 (Geman and Geman 1984] (Derin and Cole 1986] (Chou and
Brown 1987a]. In this section, we review the properties of MRF's and discuss how to
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encode prior knowledge in this formalism. We refer the reader to (Kindermann and
Snell 1980] for an extensive treatment of MRF's.

2.1. Noncausal Markovian Dependency

Let X = {X,, sES} denote a set of random variables indexed by S. Without loss of
generality, assume all variables in X have a common state space L, so that XEL. Let
{X= } be the event {X, I=w, ... ,XN= (,-v} , where w = (,w. 2 . . . ,,,N), ,isEL, is a

configuration of X. Since a configuration of X is also a feasible solution to the labeling prob-
lem, 0 also denotes the set of all possible configurations.

Let E be a set of unordered pairs (s,, s )'s representing the "connections" between the
elements in S. The semantics of the connections will become clear shortly. E defines a
neighborhood system r = {N, IsES}, where N, is the neighborhood of s in the sense that

(1) s EN,, and

(2) rEN, if and only if (s, r)EE.

X is a Markov Random Field with respect to r and P, where P is a probability func-
tion, if and only if

(positivity) P(X=&i) > 0 for all wEf2 (2.1)

(Markovianity) P(X,=w,IX=Wr, rES, r~s) = P(X,=w,1Xr=W,, rEN,) (2.2)

The set of conditional probabilities on the left-hand side of (2.2) is called the local charac-
teristics that characterizes the random field. It can be shown that the joint probability dis-
tribution P(X =,w) of any random field satisfying (2.1) is uniquely determined by these con-
ditional probabilities (Besag 1974]. An intuitive interpretation of (2.2) is that the contex-
tual information provided by S -s to s is the same as the information provided by the
neighbors of s. Thus the effects of members of the field upon each other is limited to local
interaction as defined b; b.c .',,orhood Noti.e that any random field satisfying (2.1) is
an MRF if the neighborhoods are large enough to encompass all the dependencies.

2.2. Encoding Prior Knowledge and Gibbs Distributions

The utility of the MRF concept for image labeling problems is that the prior
knowledge about spatial dependencies among the image entities can be adequately modeled
with neighborhoods that are small enough for practical purposes. Very often, the image
entities are regularly structured and prior distributions on the image are homogeneous
and isotropic. In such cases, the number of parameters needed to specify the priors is just a
fraction of QM, where M is the size of the neighborhoods. This is a significant saving over
QN - the number of possible configurations, especially when M is small.

There are difficulties, as stated in [Geman and Geman 1984], associated with using

the MRF formulation by itself:

(1) The joint distribution of the X, is not apparent,

(2) It is extremely difficult to spot local characteristics, i.e., to determine when a given set
of functions are conditional probabilities for some distribution on Q.
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(1) is not a serious problem for some special classes of MRF models such as Markov
Mesh (MM) processes (Kanal 1980], since their joint distributions can be represented in a
recursive formulation due to the casual dependency assumed. For (2), parametric probabil-
ity distributions such as Gaussian and binomial, have been been used in the literature
(Cross and Jain 1983] (Cohen and Cooper 1987]. Using such distributions further
simplifies the encoding of the local characteristics and has shown some impressive results
on modeling and generating texture patterns. However, whether these kinds of
simplifications preserve the power of MRF's for modeling spatial knowledge remains ques-
tionable.

Fortunately, these difficulties vanished when the following property of MRF's was
realized.

Hammersley-Clifford Theorem: A random field X is an MRF with respect to a neighborhood
system r if and only if there exists a function V such that

-e- TU(&I)(23

P (W) = Z for all wEQ (23)

where T and Z are constants and

U(W) = I V,(W). (2.4)
C(C

C.denotes the set of totally connected subgraphs (cliques) with respect to r. Z is a normal-
izing constant and is called the partition function.

The probability distribution defined by (2.3) and (2.4) is called a Gibbs distribution
with respect to r. The class of Gibbs distributions has been extensively applied to model
physical systems, such as ferromagnets, ideal gases, and binary alloys. When such systems
are in a state of thermal equilibrium , the fluctuations of their configurations follow a
Gibbs distribution. In statistical mechanics terminology, U is the energy function of a sys-
tem. The V, functions represent the potentials contributed to the total energy from the
local interactions of the elements of clique c. T, the temperature of the system, controls the
"flatness" of the distribution of the configurations.

Gibbs distributions, and therefore MRF's, possess a property that appears to be desir-
able for modeling - when constrained by a fixed expected value of some sufficient statistic of
the random field, the maximum entropy distribution among the class of distributions com-
patible with the constraint is a Gibbs distribution.

The MRF-Gibbs equivalence not only relates the local conditional probabilities to the
global joint probabilities, but also provides us a conceptually simpler way of specifying
MRF's - specifying potentials. The importance of the joint probabilities will become evident
in the next section. The local characteristics can be computed from the potential function
through the following relation:

e c(
P(X=wIX,=a,,r~s) = -(2.5)

Xe rTC,
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where C, is the set of cliques that contain s, and w' is any configuration of the field that
agrees with ,w everywhere except possibly s.

There has been little work that applies statistical estimation methods to estimate
parameters used for specifying MRF's. [Cross and Jain 1983] applies a coding scheme to
estimate the parameters in their binomial distribution models using a maximum likelihood
criterion. (Elliott and Derin 1984) uses a least-square-fit method to estimate potential
functions in the Gibbs distributions of their texture models. These methods are good when
many uncorrupted realizations are available. When such data are difficult to acquire, choos-
ing the clique potentials on an ad hoc basis has been reported to produce promising results

[Geman and Geman 1984) (Marroquin, Mitter, and Poggio 1985). Our experiments (Sec-
tion 6) have also shown good results. These results are not surprising since the notion of
clique potentials provides a simple mapping from "qualitative" spatial knowledge to
numeric values of the parameters specifying the MRF's.

3. Bayesian Decision Rationale and Optimality of Solutions

At various levels of a visual hierarchy, estimations (decisions) must be made based on
the information available. The estimation procedures become complex when the informa-
tion is uncertain, which is usually the case in visual processing. In this section, we exam-
ine the Bayesian decision rationale and the optimal solutions to the labeling problem with
respect to this rationale.

3.1. A Posteriori Probabilities

Section 2 described how to encode prior spatial knowledge using the MRF formalism.
Incorporating the image observations, Bayes' rule can then be used to derive the a pos-
teriori probabilities on 12 from the a priori model of the image.

(Bayes' Rule) P(w1O) = P(,w)P(OJ 4)
P P(( /)P (O 1 W') (3.1)

0 denotes the image observations. The likelihood of an event {X = } given 0, P(O 1 ), is
usually derived from the image degradation model involving imaging noise and blur
(Geman and Geman 1984]. (Sher 1987] and [Bolles 1977] show methods to generate likel-
ihood functions from either probabilistic models or statistical data.

For a shift-invariant point-spread function and white Gaussian noise, the a posteriori

distribution associated with the a priori distribution defined by (2.3) and (2.4) is a Gibbs
distribution with respect to a neighborhood system related to r and the support of the
point-spread function [Geman and Geman 1984]. For simplicity, we assume the following
conditional independence, that is generally true when the noise field is independently dis-
tributed.

P(Ow) = riP(0.1W.) (3.2)
(ES

0, denotes a set of image observations over a spatial region dependent on s, typically
including s and its spatially adjacent elements. This assumption appears to be very useful
for fusing and modeling early visual modules (Chou and Brown 1987a] and for texture
modeling [Derin and Cole 1986]. The a posteriori MRF thus has the same neighborhood
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system r with the energy function

= - TI nP(O, ,) (3.3)
cEC oES

3.2. Optimal Labelings

The goodness of a labeling L, following the Bayesian formalism, is evaluated in terms

of its a posteriori expected loss,

Loss (: O) = Xloss( ,u)P(W O) (3.4)

where loss(L,w) is a penalty associated with the estimate L while the "truth" is w.

One question concerning the applicability of (3.4) is which loss function should be

used for a given task. Except for few simple cases, the answer to this question usually
relies on subjective judgements. One popular choice is assigning a constant penalty to

incorrect estimates: loss(L,w) equals to a constant (positive) value whenever L ew, and 0
otherwise. Using this loss function, the configuration minimizing (3.4) maximizes the a pos-

teriori probability P(wi 10), and therefore minimizes the a posteriori energy (3.3) in the MRF

formalism. This Maximum A Posteriori (MAP) criterion has been widely applied to the

labeling problem (Feldman and Yakimovsky 1974] (Geman and Geman 1984] [Derin and

Cole 1986] [Murray and Buxton 19871 (Cohen and Cooper 1987]. Marroquin et al [1985]
suggest that the number of mislabeled image entities of an estimation is a better loss meas-

ure for the labeling problem. They derive the Maximizer of the a Posteriori Marginals

(MPM) estimation - choosing the configuration i = , " " such that

€I, = max P,(lIO) Vs ES, (3.5)

where Pa(l 10) denotes the a posteriori marginal probability of 1 on s. In their experiments

the MPM estimator is shown to be superior to the MAP criterion when the signal to noise

ratio is low.

Notice that the rationale of minimizing the loss function in (3.4) does not take the cost

of computation into account, despite the fact that computational cost is usually a primary

consideration in image understanding applications because of their immense configuration
spaces. A sub-optimal estimator with an effective computation procedure would be much

more useful than an optimal estimator that no one could ever compute. It is believed that

the exact evaluation of MRF statistical moments, and therefore (3.4), is generally impossi-

ble since no analytic solutions exist (Hassner and Slansky 1980] (Geman and

Geman 1984]. MAP and MPM can not be exactly determined for the same reason, except

for some simple energy functions. In the rest of the paper, we discuss several numerical

approaches for the approximate evaluations of the MAP and MPM estimations in the MRF

formalism.

4. Stochastic Relaxation Methods

One method that has been successfully used to analyze the behavior of complex sys-
tems is generating sample configurations of a given system through stochastic simulations.

Briefly, the Monte Carlo method of estimating the ensemble average of a variable Y w),
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< Y> f fY ()dP (w),

is averaging its values over a set of samples { w, R, } drawn from 9. If the sampling
of w's follows the distribution P, then < Y > can be approximated by

I R< y> -17 wd

We are interested in sampling procedures that generate configurations according to
Gibbs distributions in the form of (2.3). With such procedures, the sample frequercies of the
realizations of X, can be used as approximations for the marginal probabilities, i.e., MPM
can be estimated; the configurations with higher probabilities are more likely to be sam-
pled, and therefore MAP estimation becomes possible (see Section 4.2). Several procedures
exist for this purpose. The basic idea of these procedures is to construct a regular Markov
chain whose states correspond to the configurations of the system with the limiting distri-
bution being the desired Gibbs distribution. That is, construct Pc - the transition matrix of
the chain - in such a way that the following condition holds.

iPc = v, (4.1)

where ir is the desired Gibbs measure. At equilibrium, the system's configurations are dis-
tributed according to wr since ir is the unique invariant measure of the constructed Markov
chain [Kemeny and Snell 1960] .

Consider each state transition of the Markov chain involving only the change of the
state of a single entity in the system. To fulfill the requirement of the chain being regular,
the procedure must continue to "visit" every entity. Let s (t) be the entity being visited at
time t. The change of X,(t) would result a change of the system energy by the amount
specified by the configurations of those cliques that contain s(t) according to (2.4). Stochas-
tic sampling procedures reminiscent of "relaxation" can be designed in the sense that the
state transition of the entity being visited is stochastically decided by the states of the
neighboring entities and itself. We will describe two of the stochastic relaxation pro-
cedures, namely the Metropolis algorithm (Metropolis et al. 1953] and the Gibbs sampler
(Geman and Geman 1984], for their representativeness. Other variations basically follow
the same principle and serve special purposes [Hassner and Slansky 1980) [Cross and
Jain 19831 [Hinton and Sejnowski 1983].

4.1. The Metropolis Algorithm and the Gibbs Sampler

Lot X(t) denotes the state of the system at time step t. The state transition from step
t to t +1 of the Markov chain generated by the Metropolis sampling algorithm consists of
two basic steps:

(1) Randomly select a new configuration wi' ( randomly visit an entity s and choose a new
state w',), and compute the energy change AE = E(w') - E(X(t)).

(2) If AE <0 , set X(t +1) = w'. Otherwise, set X(t + 1) to wo' or X(t) with probabilities
,'... = -Mir and I - "-AzLr respectively.

v(X(9))

Allowing transitions with energy increases, a common characteristic of all stochastic
relaxation procedures, prevents the sampling process from geiting stuck at states of local
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energy minimum - an undesirable property of every deterministic hill-climbing procedure.
In contrast to the explicit use of the energy difference in the Metropolis algorithm, the
Gibbs sampler uses the local characteristics to construct a Markov chain. A state transition
of the Gibbs sampler also consists two steps:

(1) Visit an entity s.

(2) Randomly select the new state w', for X,(t +1) following the distribution
(X(t+1)=i.jX,(t),r*s). Having the form in (2.5), this distribution is generally

easy to compute.

For binary systems, the Gibbs sampler is equivalent to the widely used "Heat Bath"
algorithm - changing the state with probability 1 . Like other relaxation methods,1+c €

AU / T

the above procedures suggest the use of a parallel implementation since "updating" the X,'s
requires propagating information only among neighboring computing units. Extra caution
must be paid to the updating patterns of synchronous machines. For the Metropolis and
Heat Bath algorithms, using any prescribed updating order may result in the Markov chain
not converging to the desired Gibbs distribution w [Marroquin 1985. Our experiments use
the Gibbs sampler exclusively because it guarantees the coincidence of r with the invari-
ant measure of the chain as long as neighboring entities are not updated simultaneously.

4.2. The Monte Carlo and Simulated Annealing Methods

The stochastic relaxation scheme can be used to approximate the a posteriori margi-
nal probabilities for the MPM estimation by simulating the equilibrium behavior of the a
posteriori MRF. Since the Markov chain constructed by either the Metropolis algorithm or
the Gibbs sampler leads to the desired limiting distribution regardless of its initial state,
the law of large numbers suggests the marginal probability P,(l 10) be approximated by the
sample frequency of X, = I at equilibrium, that is,

P-(I0) - - 8(X.(t)-l) (4.2)n k t  w

where 8(0) = 1, and 0 elsewhere. k is the number of steps for the chain to reach equili-
brium, and n is the total number of steps of the simulation. Practically, experimentation is
needed to determine how large n and k should be to achieve a desirable approximation
accuracy given an arbitrary MRF. Cross and Jain (1983] have observed that in less than
10 iterations (full sweeps over the image entities), their texture modeling system becomes
"stable" when sampled by a variation of the Metropolis algorithm. In general, in the order
of hundreds of iterations are needed for the MPM estimation.

The system temperature - T in (2.3) - also plays an important role in MRF simula-
tions. With low temperatures, the Gibbs distribution strongly favors the low energy
configurations, but the time required for the system to reach equilibrium may be long. The
system may reach equilibrium faster at higher temperatures, but the configurations are
more evenly sampled; i.e., it may require more samples to make accurate MPM estimations.
The idea of simulated annealing [Kirkpatrick, Gelatt, and Vecchi 19831, obviously inspired
by physical annealing, is to reach the minimum energy states of a system by starting the
system at a high temperature and gradually reducing it. In doing so the system tends to
respond to large energy differences at the beginning, and is likely to find a good minimum
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energy state independent of its starting state. As the temperature decreases, the system
tends to respond to small energy differences, and ideally settles at the lowest energy states
ever encountered. The decreasing sequence of temperatures, called the annealing schedule,
decides the effectiveness of this process. If the time spent at each temperature is not
enough, the system may not converge to the global minimum states. On the other hand, it
is often computationally prohibitive to use a slowly decreasing schedule. Geman and
Geman [84] have derived an upper bound for the annealing schedules so that the schedules
slower than this bound are guaranteed to converge to the global minimum energy states.
However, this bound is very difficult to decide in practice since it relates to the range of
energy values of the system.

Simulated annealing has been applied in many computer vision tasks that involve
optimization over exponential spaces, including the MAP estimation [Geman and
Geman 1984] and the stereo matching problem [Barnard 1987]. One major concern of
using the stochastic relaxation scheme is its efficiency: at what cost can this scheme deliver
satisfactory results? Not surprisingly, the cost is intolerable for many applications. In the
next section, we describe a new deterministic method to approximate MAP. This method,
following a search path suggested by the visual observations to find a minimum energy
state, appears to give results favorably comparable in practice to the existing relaxation
methods while being computationally less expensive.

5. Deterministic Relaxation Methods

Exact calculation of the MAP estimate is computationally prohibitive. For vision sys-
tems that require predictable results in reasonable time periods, using suboptimal estima-
tion criteria and/or heuristics in searching for solutions seems to be a reasonable alterna-
tive to the stochastic relaxation scheme. In [Derin and Cole 1986], MAP estimations are
performed on narrow strips of the image. The strips are limited to at most four rows wide
so that MAP can be exact computed for each strip by a dynamic programming algorithm at
feasible cost. For each estimation, only the estimate of the first row of a strip is kept. It
serves as the boundary condition for the next strip consisting of the rest of the rows and a
new one. Though limiting the extent of the (column-wise) interactions, the texture segmen-
tation results appear to be impressive. Before we describe the proposed heuristic-based
algorithm, we examine an iterative relaxation method for estimating MAP.

5.1. Iterative Energy Minimization

A simple version of deterministic iterative relaxation methods for energy minimiza-
tion is the Metropolis algorithm without randomness: Start with an initial configuration.
At each iteration through the image entities, the state of each entity is either changed to
the state that yields maximal decrease of the energy, or is left unchanged if no energy
reduction is possible. The process stops when no more changes can be made. This algo-
rithm is guaranteed to find a local minimum of the energy function since each iteration
strictly decreases the energy value and there are only a finite number of different values of
the energy function. For parallel implementation, convergence is assured if the neighbor-
ing entities are not updated simultaneously.

Unavoidably, the local minimum obtained by the above algorithm may be far from
optimal. Two enhancements are apparently helpful:
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t.) Start with a better initialization of the MRF. The best one can hope is that the energy
value of the initial configuration falls into the valley of the global minimum. One pos-
sibility is to use the maximum likelihood estimates (MLE) - X5(O)=wo, if
max P(O,Il)=P(O,I o,).
/EL

(2) Escape from shallow valleys. By changing the states of more than one entity at once,
the new configuration may lead to a better local minimum. In a procedure described
in (Cohen and Cooper 1987], the entities with small preferences of the current states
over the others are assigned new states when a local minimum is reached. The relaxa-
tion restarts with the new configuration as the initialization. At each convergence, the
magnitude of the local minimum is estimated, The procedure halting when no
significant change of the magnitudes is observed. The hope is that the deepest valley
will be found in this process.

Unfortunately, these two modifications are not adequate. The local MLE's are good
only when the noise process is correctly modeled in computing the likelihoods and there are
significant differences among the likelihoods of the hypotheses. Frequently these conditions
cannot be met. Cohen and Cooper's procedure, obviously a compromise between stochastic
and deterministic relaxation methods, suggests a tradeoff between speed and performance.

The algorithm of this paper blends the initialization into the estimation proces.
Instead of stepping through the configuration space S, this algorithm constructs a
configuration with a local minimal energy measure. Observable evidence and spatial prior
knowledge are combined in the process of the construction, resulting in better results and
efficiency. The details of this algorithm are described next.

5.2. The Highest Confidence First Algorithm

To see how this algorithm works, some terminology needs to be introduced. Let
, = LU{lo} denote the augmented label set, where L = 111, • ,lQJ is the set of labels, and

1o is the null label corresponding to the "uncommitted" state in the construction. Let 5 =
{fw=(wi, " " " ,i )to,(L,Vs(S} denote the augmented configuration space. Define the aug-
mented a posteriori local energy of lEL with respect to s(S and a configuration w E 2 as

E,(1)= V',(t') - T lnP(0, 1l), (5.1)
C; 8(c

where w'E5 is the configuration that agrees with w everywhere except w', = 1, and V'c is
0 if wo, = 1s for any r in c, otherwise it is equal to V, - the potential function.

The basic idea of this algorithm is to construct a sequence of configurations
wo,,1, ' • ' with the starting configuration w* = (to, • • ,l1), and a terminal configuration

W.f(f1, where Uo(w f ) is a local minimum with respect to Q. We say an entity s has made its
current decision 1, 1EL, if the just-constructed (current) configuration Wo in the sequence has
the component wi, = 1, and it has not made a decision if w, = lo. Once an entity makes a
decision, it can change this decision to other labels of L but not to lo. To ensure the quality
of the resulting estimate - wt, at each step of the construction we permit only the least
"stable" entity to change/make its decision. We define the stability of s with respect to the
current configuration w, ti, as
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G,(w) = min AE,(k,1) if IEL (5.2a)
kEL.k "t

G,(w) = - min AE,(k,j) if I = 1 and jEL s.t. E,(j) = min E,(k), (5.2b)

kEL,k a k(L

where AE,Ui,k) = E,(j) - E,(k) with respect to w.

The stability defined above is a combined measure of the observable evidence and the
a priori knowledge about the p references of the current state over the other alternatives. A
negative value of G, that is always true for (5.2b), indicates a more stable configuration
will result from an alternative decision. Since an entity has no effect on its neighbors
unless it has made a decision, the entities with large likelihood ratios of one label over the

others - strong external evidence in favor of a label - will be visited early in the construc-
tion sequence. The entities with little idea from the observations will collect information
from the neighbors' decisions to make their decisions; an early decision will be altered if
the neighbors' later decisions are strongly against it. In this way, every step of this con-
struction makes a maximal progress based on the current knowledge about the field - the
G's. This Highest Confidence First algorithm is expected to find the estimate that is "con-
sistent" with the observations and the a priori knowledge.

The Highest Confidence First algorithm can be implemented serially with a heap
(priority queue) maintaining the visiting order of the construction according to the values
of G's in such a way that the top of the heap is the entity with the smallest G value. Updat-
ing the top's decision will cause the changes of its neighbors' G-values, and therefore the
structure of the heap. The following is the pseudo code for the Highest Confidence First
algorithm:

, = (0, "" ,0);
top = CreateHeap(,);
while (G.P < 0)

a = top;
ChangeState(to,);
UpdateG(G, );
Adjust.Heap(s);
foreach (r E N,) {

UpdateG(G,);
AdjustHeap(r);}

}
return(,);

ChangeState(,) changes the current state ,, of s to the state I such that
AE E(1, W) = min E,(k, w,) if w,EL, or E,(l) = minER(k) if w. = 10 . Upon this change

kEL~hv, k(LE

taking place, the stability of s changes to positive. UpdateG is called for every entity that
is affected by this change, namely the neighbors of s according to (5.1), to update their sta-
bility measures with respect to the new configuration. AdjustiHeap(r) maintains the heap
property by moving r up or down according to its updated G-value.

Several desirable properties of this procedure can easily be verified:
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(1) Termination: This procedure always returns in finite time. To see this property, let us
consider the two types of Change-State - making and changing a decision -
separately. The procedure can make at most N decisions, one for each entity, since
nullifying decisions is impossible. Let D = (SD,S -SD) be a partition of S such that

SD is the set of entities that have made decisions. Let D -

{,,Iw, EL VsESo and W,=1o VsES-SDo . Since, by (5.1) and (5.2a), changing
the decision of s E SD strictly decreases the function UD : f --+ R,

UD(w) = MV'A(w) - T lnP(O,jI,),
C S(SD

the procedure can make only a finite number of changes with respect to a fixed parti-
tion D. There are only a finite number of partitions, therefore the total number of
decision changes is finite.

(2) Feasibility: The returned configuration is in 9 - the space of feasible solutions. For if
otherwise, there exists an s such that w, = lo. From (5.2b), G, < 0. This violates the
heap invariant property since it requires GtP a 0 to exit the while loop.

(3) Optimality: The returned configuration has the locally minimal energy measure with
respect to Q. That is, changing the decision of any single entity can not decrease the
a posteriori energy measure Uo. As above, this property can easily be derived from
(5.2a) and the heap properties.

This implementation takes O(N) comparisons to create the heap and O(log(N)) to
maintain the heap invariance for every visit to an entity, provided the neighborhood size is
small relative to N. The overheads of heap maintenance are well repaid since the procedure
makes progress for every visit, in contrast to the iterative relaxation procedure (Section
5.1) that may make only few changes per iteration (N visits). Our experiments show that
on the average, less than one percent of the entities are visited more than once using the
proposed algorithm while the deterministic relaxation procedure takes around 10 iterations
to reach a local minimum. This advantage becomes more evident as the number of entities
gets larger. Experimental results are strongly in favor of the proposed algorithm for both
efficiency and correctness. They are discussed in Section 6.

5.3. Possible Extensions

Since the order of the deterministic decisions of the entities in a cooperative network
is crucial to the final mutual agreement, the proposed algorithm assumes that good results
can be obtained by delaying the decisions of those entities who have little idea about what
to do until they get enough help from their neighbors. This heuristic can be used along
with other computational methods to achieve, perhaps, better results.

Let us look more closely at the process of achieving a consensus using this heuristic.
At each stage, SD consists of a set of isolated clusters A cluster is a set of spatially con-
nected (with respect to ) entities. We say two clusters are isolated from each other if none
of the entities of a cluster is a neighbor of any entity of the other cluster. Each cluster
corresponds to an MRF with free boundaries in our formalism. When an entity makes a
decision, a cluster is created or expanded, or clusters are merged. When an entity changes a
decision, the energy of the corresponding MRF is reduced. Eventually, all the clusters are
merged and the final agreement corresponds to a local minimum configuration of the
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corresponding MRF.

The notion of growing clusters suggests a natural partition of the image. At any
instance, the entities belonging to the same cluster are tightly related, but they are
independent of the members of other clusters. The addition of a new member to a cluster
may change the decisions of the old members, but the changes are expected to be small due
to the way the clusters are constructed. Therefore, it makes sense to compute the MAP esti-
mates exactly for small clusters early in the process. We believe that by doing so the
results would be better than the results using the horizontal strip partition as in (Derin
and Cole 19862.

The process of growing clusters is similar to annealing in the sense that it responds to
large energy differences earlier than small ones. Nondeterminism can be introduced to
those entities that stay "unstable" -the entities on or exterior to the border of the clusters -
late in the process, since more spatial information is required for them to reach a globally
satisfactory agreement.

The Highest Confidence First algorithm can be implemented with a set of cooperative
computing units. Consider a winner-take-all network where each unit corresponds to an
entity of the image [Feldman and Ballard 1981]. Only the units with the smallest stability
measures can "fire" at one instant; each unit maintains the knowledge about the neighbor-
ing units so that its stability measure can be updated immediately should any neighbor
change its state. The parallelism gained, however, is limited due to the sequential firing
order.

6. Experiments and Results

We have chosen to tackle the well studied problem of edge detection using MRFs as
the underlying formalism. The labeling problem in this context is to assign to each edge
element a label from the set {EDGE, NON-EDGE. Each of these edge elements is modeled
as an MRF entity. The MRF entities are considered to be situated on the boundary between
two pixels (see Fig. 1). The MRF model used is similar to the "Line Process" MRF used
both by Geman et al [1984] and Marroquin et al (19851. Hence the MRF is binary, with
2(N 2 -N) entities where the image is a NXN rectangular pixel array.

6.1. Construction of Potential Functions to Encode Prior Knowledge

The spatial relationships between entities we wish to enforce include:

(1) To encourage the growth of continuous line segments,

(2) To discourage abrupt breaks in line segments,

(3) To discourage close parallel lines (competitions) and

(4) To discourage sharp turns in line segments.

A second order neighborhood turns out to be sufficient to enforce all the relationships
we want. In this neighborhood system, each MRF element is adjacent to eight others (see

Fig.s 1 and 2).

The second order neighborhood has cliques of sizes 1 through 4 (see Fig. 3). The poten-
tial values we assign to various configurations of these cliques are shown in Fig. 4. These
values form the specification of the potential functions. Therefore potential functions can be
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seen to be specified by about 10 parameters, which are currently assigned in an ad hoc
manner. The rules of thumb that are used to assign values to these parameters are:

Determine Structure Enforcers For each clique, attempt to determine what kind of

structural relation it is uniquely capable of enforcing.

Encode Prior Structural Knowledge By assigning "high" potential values to undesir-
able configurations of the cliques and "low" values to desirable ones, we attempt to ensure
that the final estimate will contain as few of the undesirable ones as possible.

Encode Statistical Prior Knowledge We use the clique consisting of the singleton node
to bring the first order statistics (e.g. the density of EDGEs) of the MRF into line with
what we already know. The potential of the clique when the MRF entity is an EDGE is set

to our estimate of the log of the (local) odds of an entity being an EDGE over a NON-
EDGE, and is set to 0 when it is a NON-EDGE.

A point to be noted is that some of these parameter values are interdependent. For
example, increasing the energy for "break" (Fig. 4b) and "continuation" (Fig. 4c)
configurations simultaneously would be of little use, as the increases would tend to cancel
each other out.

The sensitivity of the results obtained to changes in the parameters specifying the
potential functions depends upon the parameter in question. Our experience is that chang-
ing the potential function associated with the 1-clique had the greatest effect on the final
result, followed by the 2-clique and 4-clique potential functions, in that order. This could be
because the singleton clique controls first order statistics and the larger cliques higher
order statistics, which are known to be less important in distinguishing images
(Julesz 1981].

6.2. Likelihood Generation

We adopt a step-edge with white Gaussian noise model to compute the local likeli-

hoods of an entity s being EDGE or NON-EDGE - P(O,Ic, = EDGE) and

P(O, Iw,=NON-EDGE). The observation - 0, - is a 1X4 or 4X1 window of brightness
observations surrounding s. This window of intensity values is assumed to be a realization
of one of the possible e. -nts depicted in Figure 5, corrupted by independent Gaussian noise.
The reader is referred to [Sher 1987] for details of probabilistic edge detection.

From (3.2), observe that scaling P(O, 11) for every IEL by a constant factor for fixed s

does not change the a posteriori distribution. This fact allows us to use the likelihood
-P (O.I[ ,i,= EDGE)

ratios - 0,,=NON-EDGE) " as the only input data, thus simplifying the computation of

the stability measures (5.2). Thresholding the likelihood ratios by the prior (local) odds of
an entity being an EDGE results in the thresholded likelihood ratio (TLR) configuration
that can be considered as an MAP estimate obtained without using contextual information.
In our experiments, we use TLR as the initial configuration whenever possible.

6.3. A General Purpose MRF Simulator

Our experiments use an interactive general-purpose MRF simulator package with
extensive graphics and menu-driven control (Fig. 6). This package takes the description of
the MRF and the likelihood ratios as input and simulates the state transitions of the
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entities comprising the the MRF. The user can specify the estimation algorithm to be used
and also the initialization of the MRF - each entity can be initially set to either a NON-
EDGE or to its TLR state. The input MRF is constrained to be a homogeneous one, so as to
make the time and space needed to run simulations reasonable.

The user provides the description of the MRF to the simulator in a file. This file con-
tains a specification of the nodes comprising each clique, as well as the potential function
associated with it. The user specifies all cliques that a node could belong to in the most
general case, including all instances of a particular clique type that contain the node. (i.e.,
even if all the cliques containing a node are instances of the same clique type, the user
specifies each instance separately). The nodes forming a clique are specified by their coor-
dinates relative to the node of interest, which is defined to be at relative coordinates (0, 0).
Boundary conditions, as in the case of nodes near the border of the MRF, are taken care of
by the simulator. The potential function is specified as a function that takes as input a
configuration vector (a vector of states of nodes of the MRF) and returns a potential value.
The potential function is associated with the clique description, and the ordering of the
node states in the configuration vector passed it is the same as the order the nodes are
specified in the description of the clique itself.

The simulator performs certain preprocessing actions on the description of the MRF
provided by the user, to promote run-time efficiency. The first is to store each potential
function as a table indexed into by a configuration vector. This is done so as to avoid run-
time calling of the user's potential function code , which can be quite complex, replacing it
instead with a simple table lookup. The other is "clique containment", which is based on
the observation that if one clique completely contains the other, then a configuration vector
of the nodes in the larger clique contains implicitly the configuration vector for the smaller
clique. This suggests that by judiciously "adding" together the potential functions for the
clique in the preprocessing stage, we can avoid run-time evaluation of the potential func-
tion for the smaller clique. This simplifies the state transition energy evaluation by reduc-
ing the number of terms to be summed up. If floating-point arithmetic is costly, this can
save considerable computational effort. The preprocessing needs to be done just once, and
can be performed off-line.

6.4. Experimental Results

The simulator described above has been used for a series of experiments aimed at
comparing the performances of various relaxation algorithms with respect to the goodness
of final estimations and rate of convergence. We focus upon algorithms using the MAP cri-
terion, including Highest Confidence First (HCF), Deterministic Iterative Relaxation (DIR)
and stochastic MAP (simulated annealing with Gibbs Sampler (Geman and Geman 19841).
The results obtained by using stochastic MPM (Monte Carlo approximation to the MPM
estimate (Marroquin, Mitter, and Poggio 1985]) are also presented for the sake of complete-
ness of comparisons, as are those obtained by applying 3X3 Kirsch operators with non-
maximum suppression. The annealing schedule for the stochastic MAP follows the one sug-

gested in (Geman and Geman 1984), i.e. Th = where T is the temperature for
log(l +k)

the kU iteration, with c = 4.0. The stochastic MAP was run for 1000 iterations and the
stochastic MPM for 500 (300 to reach equilibrium, 200 to collect statistics).
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6.4.1. Comparison of Estimates

Here we show the results of three sets of experiments (Fig.s 7 through 9). The figures
for each set contain the original image, the result from the Kirsch operators, the TLR
configuration and the results obtained by using stochastic MAP, stochastic MPM, DIR
(scan-line visiting order), DIR (random visiting order) and HCF algorithms. Except in the
case of the HCF algorithm, where the MRF is initialized to all null (uncommitted) states,
the MRF is initialized to the TLR configuration. The MRF specification is the same
throughout.

Fig. 7a shows a synthetic 50 pixel square "checkerboard" pattern. Each of patches is
10 pixels across, with an intensity chosen randomly from between 0 and 255. The image
has been degraded by independently adding to each pixel Gaussian noise with a mean of 0
and a standard deviation of 16. The HCF and stochastic MPM (Figs. 7g and 7d) are the
same, and have completed most of the desired edges. The DIRs (Figs. 7d and 7e) have
incomplete edges and the stochastic MAP has some undesired edges and incomplete desired
edges (Fig. 7c). The Kirsch operator result is not shown as the edges in this image are
always located exactly in between pixels, while the Kirsch operator assumes edges to be at
pixel locations, and so a comparison would be unfair to the Kirsch operators.

Fig. 8a shows a 50 pixel square natural image of a wooden block with the letter "P'
on it. The MAP estimate has several undesirable lines (Fig. 8d). The MPM estimate per-
forms poorly on the right edge of the block and the inner ring of the "P". The DIR scheme
(serial scan) (Fig. 80 performs better than the random scan version (Fig. 8g), but is less
than satisfactory on the leg of the "P" and the right edge of the block. The HCF estimate
(Fig. 8h) does not suffer from the above flaws, producing clean, connected edges.

Fig. 9a shows a 10X 124 natural image of 4 plastic blocks with the letters "U", "R",
"C" and "S" on them. Again, the HCF algorithm produces superior results (Fig. 9g). It has
the clearest letter outlines and also is alone in detecting the entire bottom edge of the "R"
block. The MAP estimate partially detects the bottom edge of the "R" block, but generates
redundant lines (Fig. 9c). The MPM estimate has clear letter outlines but does poorly on
the outlines of the left blocks (Fig. 9d). The DIR scheme (scan-line) does well on the letter
outlines but poorly on the block outlines while the random scan version does poorly on both
(Figs. 9e and 90.

To test the robustness of the algorithms, we conduct further experiments using a likel-
ihood generator with a less complete edge model. Since offset edges (Fig. 5c) are not con-
sidered here, multiple responses become significant as can be seen from the TLR
configuration shown in Fig. 10a. This change strongly affects the estimates produced by all
the algorithms except the HCF, as can be seen from comparing corresponding pictures in
Fig. 9 and Fig. 10.

6.4.2. Rates of Convergence

We restrict ourselves to comparisons between deterministic schemes, as stochastic

schemes do not have any convergence criterion per se - the point of convergence is depen-
dent upon our judgement as to when equilibrium has been reached, and as to when we
have gathered enough statistics to estimate the joint (or marginal) probabilities accurately
(typically several hundred iterations are needed). The deterministic algorithms (HCF and
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DIR (scan-line)) have been timed on images of various sizes using a Sun 3/260 with floating
point acceleration. The results are shown in Table 1.

6.5. Analysis of Experimental Results

Goodness of Estimates

(1) The HCF algorithm repeatedly outperforms all other algorithms, giving superior
results both with synthetic and real image data. The common characteristics of the
results we have obtained from using this algorithm are that they all fit well in our
model of the world, which consists of smoothly continuous boundaries, and that they
are consistent with the observations.

(2) The HCF algorithm also appears to be robust, in that it produces an estimate con-
sistent with the observations even when the MRF model used is inadequate, as in the
experiment using the less sophisticated edge detector. Since our MRF model does not
take into account multiple responses, the MAP criterion may not lead to the "best"
results. In this case, the local minimum found by the HCF algorithm is actually better
than the global one as it is based on the strength of external evidence.

(3) The DIR algorithm performs inconsistently and its results depend to a large extent
upon the initialization of the MRF and the visiting order. It is also not clear which, if
any, of the visiting orders studied is-better than the other.

(4) The stochastic MAP algorithm with simulated annealing gets stuck in undesirable
local minima, suggesting that our annealing schedule might have lowered the tem-
perature too fast. However, an appropriate annealing schedule seems hard to obtain a
priori.

Convergence Times

(1) The HCF algorithm makes a perhaps surprisingly small number of visits before con-
verging. Clearly, due to the initialization, it must visit every node at least once. What
is surprising is that it visits each node on the average less than 1.01 times before con-
verging. What this implies is that the first decision made by a node is nearly always
the best one.

(2) The convergence times of the DIR algorithms are unpredictable - they vary with visit-
ing order, MRF initialization and even upon the particular image given as input. The
HCF algorithm, in contrast, takes almost the same time on different images of the
same size. The time taken by the HCF algorithm includes the time taken to set up the
heap initially. This may, in some circumstances, be a little unfair. For instance, if one
has to process data online from various information sources (Chou and Brown 1987a]
rPoggio 19851, the heap setting up cost can be treated as a preprocessing cost rather

than a run-time one.

(3) In theory, the time taken by the HCF algorithm should be given by cIN+c 2 Vlog 2 N,
where cI and c 2 are positive constants, N the number of entities to be labeled and V
the number of visits. V here is at least N and we conjecture that on the average it is
eN for some small (1<c<2) constant c. Since the latter term should dominate, one
would expect to see a nonlinear curve in a plot of run time us. number of entities.
However, the curve is very nearly a straight line. which indicates either that the
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constant c2 is very small, or that the changed stability values do not propagate very
far up the heap on the average. The former does not appear to be true, as our experi-
ences suggest that the initial heap construction takes far less time than the rest of the
algorithm.

7. Conclusions and Future Research

We have described a new approach for solving the labeling problem. The Highest
Confidence First algorithm, aimed at approximating the MAP estimate with a priori
knowledge modeled by MRF's and external observations represented as likelihoods, leads to
outstanding results in our experiments with both synthetic and natural images. Not only
is this algorithm much faster than stochastic estimation procedures, it also converges
predictably. In addition, the algorithm is robust - in the case that the prior model proves
inadequate, it produces an estimate that is highly consistent with the observations.

We are incorporating the Highest Confidence First algorithm in a multi-modal seg-

menter described in [Chou and Brown 1987a] and believe it to be well suited to a scenario
where the result is to be computed incrementally from sparse and dynamically-arriving

data, possibly from multiple sources.

We are studying methods for systematically specifying the clique potential functions
of MRF's from given realizations. We are also analyzing the rapid convergence of the HCF
algorithm observed in our experiments from a theoretical viewpoint.

The concept of a confidence-based heuristic is likely to be useful whenever there is a

set of cooperating processes attempting to reach a consensus. The idea that the processes
with a greater degree of certainity about their decision, get to make it first, is intuitively

appealing. We are investigating applications of this idea to other fields.
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Figure 1: Relationship between MRF entities and pixels. Figure 2: The second-
order neighborhood system. Figure 3: Cliques in neighborhood system, of size
greater than one. (a-(c: size 2; (d)-(e): size 3; (0-(g): size 4
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Figure 5: Image events in a 4X1 window
(a) Edge occuring at center of window,

(b) Homogenous region: no edge occurs,
(c) No edge at center, offset edge occurs.

(Arrow indicates center of window)
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Figure 7: Experiment set. (a) Synthetic 50X50 "checkerboard" image corrupted by independent
Gaussian noise, mean 0, standard deviation 16.0. Nb TLR configuration. (c) Stochastic MAP esti-mate. (d) Stochastic MPM estimate. (e) DIR (scan-line visiting order) MAP estimate. (P) D[R (ran-
dom visitrxg order) MAP estimate. (g) HCF result.
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Figure 9: Experiment set. (a) Natural 10OX 124 image of four plastic blocks. (b) Thinned and
thresholded output of 3X3 Kirsch operators. (c) TLR configuration. (d) Stochastic MAP estimate.

(e) Stochastic MPM estimate. Mf DIR (scan-line visiting order) MAP estimate. (g) DIR (random
visiting order) MAP estimate. (h) HCF result.
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Figure 10: Experiments with incomplete edge model - original image in Fig. 9a. (a) TLR
configuration. (b) Stochastic MAP estimate. (c) Stochastic MPM estimate. (d) DIR (scan-line visit-ing order) MAP estimate. (e) DIR (random visiting order) MAP estimate. () HCF result.
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Table 1: Timing Test Results. The HCF and DIR algorithms are each run on
two images of the same size, for four image sizes. Individual and average
run-times are shown.
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